ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge-invariant Lagrangians for mixed-antisymmetric higher spin fields

87   0   0.0 ( 0 )
 نشر من قبل Alexander Reshetnyak
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional flat space-time on the basis of a BRST approach extending the results of [arXiv:1412.0200[hep-th]]. A Lorentz-invariant resolution of the BRST complex within both the constrained and unconstrained BRST formulations produces a gauge-invariant Lagrangian entirely in terms of the initial tensor field $Phi_{[mu]_{hat{s}_1}, [mu]_{hat{s}_2}}$ subject to $Y[hat{s}_1,hat{s}_2]$ with an additional tower of gauge parameters realizing the $(hat{s}_1-1)$-th stage of reducibility with a specific dependence on the value $(hat{s}_1-hat{s}_2)=0,1,...,hat{s}_1$. Minimal BRST--BV action is suggested, being proper solution to the master equation in the minimal sector and providing objects appropriate to construct interacting Lagrangian formulations with mixed-antisymmetric fields in a general framework.



قيم البحث

اقرأ أيضاً

We develop the BRST approach to gauge invariant Lagrangian construction for the massive mixed symmetry integer higher spin fields described by the rank-two Young tableaux in arbitrary dimensional Minkowski space. The theory is formulated in terms of auxiliary Fock space. No off-shell constraints on the fields and the gauge parameters are imposed. The approach under consideration automatically leads to a gauge invariant Lagrangian for massive theory with all appropriate Stuckelberg fields. It is shown that all the restrictions defining an irreducible representation of the Poincare group arise from Lagrangian formulation as a consequence of the equations of motion and gauge transformations. As an example of the general procedure, we derive the gauge-invariant Lagrangian for massive rank-2 antisymmetric tensor field containing the complete set of auxiliary fields and gauge parameters.
We investigate a non-trivial extension of the $D-$dimensional Poincare algebra. Matrix representations are obtained. The bosonic multiplets contain antisymmetric tensor fields. It turns out that this symmetry acts in a natural geometric way on these $p-$forms. Some field theoretical aspects of this symmetry are studied and invariant Lagrangians are explicitly given.
162 - A. Fotopoulos , M. Tsulaia 2009
We give a detailed review of the construction of gauge invariant Lagrangians for free and interacting higher spin fields using the BRST approach developed over the past few years.
The details of unconstrained Lagrangian formulations (being continuation of earlier developed research for Bose particles in NPB 862 (2012) 270, [arXiv:1110.5044[hep-th]], Phys. of Part. and Nucl. 43 (2012) 689, [arXiv:1202.4710 [hep-th]]) are review ed for Fermi particles propagated on an arbitrary dimensional Minkowski space-time and described by the unitary irreducible half-integer higher-spin representations of the Poincare group subject to Young tableaux $Y(s_1,...,s_k)$ with $k$ rows. The procedure is based on the construction of the Verma modules and finding auxiliary oscillator realizations for the orthosymplectic $osp(1|2k)$ superalgebra which encodes the second-class operator constraints subsystem in the HS symmetry superalgebra. Applying of an universal BRST-BFV approach permit to reproduce gauge-invariant Lagrangians with reducible gauge symmetries describing the free dynamics of both massless and massive fermionic fields of any spin with appropriate number of gauge and Stukelberg fields. The general construction possesses by the obvious possibility to derive Lagrangians with only holonomic constraints.
We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which do not take into account of the trace constraints, we use the complete BRST operator, including the trace constraints that describe an irreducible representation with definite integer helicity. As a result, we generalize the cubic vertex found in [arXiv:1205.3131 [hep-th]] and calculate the new contributions to the vertex, which contain additional terms with a smaller number space-time derivatives of the fields as well as the terms without derivatives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا