ﻻ يوجد ملخص باللغة العربية
We study the construction of the intrinsic action for PDEs equipped with the compatible presymplectic structures. In particular, we explicitly demonstrate that the intrinsic action for the standard Einstein-Hilbert gravity is the familiar first-order Palatini action. We then study the example of massive spin-2 field, where the natural presymplectic structure is not complete in the sense that the associated intrinsic action does not reproduce all the equations of motion. We explicitly relate this to the differential consequences of zeroth order in the genuine Lagrangian formulation of Fierz and Pauli. Moreover, we construct a minimal multisymplectic extension of the intrinsic action that produces all the equations of motion and argue that systems of this type can be naturally regarded as multidimensional analogs of mechanical systems with constraints.
It is well-known that a Lagrangian induces a compatible presymplectic form on the equation manifold (stationary surface, understood as a submanifold of the respective jet-space). Given an equation manifold and a compatible presymplectic form therein,
Lagrangian descriptions of irreducible and reducible integer higher-spin representations of the Poincare group subject to a Young tableaux $Y[hat{s}_1,hat{s}_2]$ with two columns are constructed within a metric-like formulation in a $d$-dimensional f
We elaborate on the recently proposed Lagrangian parent formulation. In particular, we identify a natural choice of the allowed field configurations ensuring the equivalence of the parent and the starting point Lagrangians. We also analyze the struct
We give a detailed review of the construction of gauge invariant Lagrangians for free and interacting higher spin fields using the BRST approach developed over the past few years.
Any local gauge theory can be represented as an AKSZ sigma model (upon parameterization if necessary). However, for non-topological models in dimension higher than 1 the target space is necessarily infinite-dimensional. The interesting alternative kn