ﻻ يوجد ملخص باللغة العربية
Motivated by a recent progress in studying the duality-symmetric models of nonlinear electrodynamics, we revert to the auxiliary tensorial (bispinor) field formulation of the O(2) duality proposed by us in arXiv:hep-th/0110074, arXiv:hep-th/0303192. In this approach, the entire information about the given duality-symmetric system is encoded in the O(2) invariant interaction Lagrangian which is a function of the auxiliary fields V_{alphabeta}, bar V_{dot alphadot beta}. We extend this setting to duality-symmetric systems with higher derivatives and show that the recently employed nonlinear twisted self-duality constraints amount to the equations of motion for the auxiliary tensorial fields in our approach. Some other related issues are briefly discussed and a few instructive examples are explicitly worked out.
Just as string T-duality originates from transforming field equations into Bianchi identities on the string worldsheet, so it has been suggested that M-theory U-dualities originate from transforming field equations into Bianchi identities on the memb
Quantum electrodynamics is considered to be a trivial theory. This is based on a number of evidences, both numerical and analytical. One of the strong indications for triviality of QED is the existence of the Landau pole for the running coupling. We
As an extension of the Ivanov-Zupnik approach to self-dual nonlinear electrodynamics in four dimensions [1,2], we reformulate U(1) duality-invariant nonlinear models for a gauge $(2p-1)$-form in $d=4p$ dimensions as field theories with manifestly U(1
Demanding $O(d,d)$-duality covariance, Hohm and Zwiebach have written down the action for the most general cosmology involving the metric, $b$-field and dilaton, to all orders in $alpha$ in the string frame. Remarkably, for an FRW metric-dilaton ansa
We develop a general formalism of duality rotations for bosonic conformal spin-$s$ gauge fields, with $sgeq 2$, in a conformally flat four-dimensional spacetime. In the $s=1$ case this formalism is equivalent to the theory of $mathsf{U}(1)$ duality-i