ترغب بنشر مسار تعليمي؟ اضغط هنا

Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H2 Evolution from Hydrogenated Anatase

54   0   0.0 ( 0 )
 نشر من قبل Patrik Schmuki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black TiO2 has gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Among the outstanding features of the material is that certain synthesis processes lead to the formation of an intrinsic co-catalytic center and thus enable noble-metal free photocatalytic H2 generation. In this work, we report grey TiO2 by an appropriate hydrogenation treatment exhibits excellent photocatalytic hydrogen. In this case, by the employment of thermally stable and high-surface-area TiO2 nanoparticles as well as mesoporous particles as the hydrogenation precursor, the appropriate extent of reduction of TiO2 (coloration) and the formation of Ti3+ is the key for the efficient noble-metal-free photocatalytic H2 generation. The EPR results reveal that grey TiO2 shows stronger Ti3+ feature at g ca. 1.93 than black TiO2 contributing to the intrinsic catalytic center for H2 evolution.

قيم البحث

اقرأ أيضاً

In this work, we demonstrate that a well-established and facile ball milling approach using mixtures of commercial anatase nanoparticles and TiH2 introduces noble-metal-free photocatalytic H2 activity to titania. We characterize this synergistic effe ct in view of the nature of defects, state of hydroxylation, and investigate the effect on the energetics and kinetics of electronic states and the resulting H2 evolution performance.
Here we investigate the band-level energetics of black hydrogenated titania in different polymorphs using in-situ photoelectrochemical measurements and XPS valence band measurements. We find that the conduction band of black rutile is higher in energ y than in black anatase by 0.4 eV. For photocatalytic hydrogen generation, in a polymorph hetero-junction such as in black Degussa P25, thus black rutile can act as a photosensitizer while black anatase provides charge-mediation catalysis onto H2O to generate H2. By optimizing the thermal reduction conditions of black anatase/rutile junctions the H2 production can be significantly increased.
In this study, we investigate noble metal free photocatalytic water splitting on natural anatase single crystal facets and on wafer slices of the [001] plane before and after these surfaces have been modified by high pressure hydrogenation (HPH) and hydrogen ion-implantation. We find that on the natural, intact low index planes photocatalytic H$_2$ evolution (in absence of noble metal co-catalyst) can only be achieved when the hydrogenation treatment is accompanied by the introduction of crystal damage, such as simple scratching, miscut in the wafer or by implantation damage. X-ray reflectivity (XRR), Raman, and optical reflection measurements show that plain hydrogenation leads to a ~ 1 nm thick black titania surface layer without activity, while a colorless, density modified and ~ 7 nm thick layer with broken crystal symmetry is present in the ion implanted surface. These results demonstrate that i) the H-treatment of an intact anatase surface needs to be combined with defect formation for catalytic activation, and ii) activation does not necessarily coincide with the presence of black color.
Magneli phases of titanium dioxide (such as Ti4O7, Ti5O9, etc.) provide electronic properties, namely a stable metallic behavior at room temperature. In this manuscript, we demonstrate that nanoscopic Magneli phases, formed intrinsically in anatase d uring a thermal aerosol synthesis, can enable significant photocatalytic H2 generation. This without the use of any extrinsic co-catalyst in anatase. Under optimized conditions, mixed phase particles of 30 percent anatase, 25 percent Ti4O7 and 20 percent Ti5O9 are obtained that can provide, under solar light, direct photocatalytic H2 evolution at a rate of 145 micromol h-1 g-1. These anatase particles contain 5-10 nm size inter-grown phases of Ti4O7 and Ti5O9. Key is the metallic band of Ti4O7 that induces a particle internal charge separation and transfer cascade with suitable energetics and favorable dimensions that are highly effective for H2 generation.
Very recently, it has been shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor [1]. We will present here the preparation and characterizatio n of graphitic carbon nitride (g-C3N4) films on semiconducting substrates by thermal condensation of dicyandiamide precursor under inert gas conditions. Structural and surface morphological studies of the carbon nitride films suggest a high porosity of g-C3N4 thin film consisting of a network of nanocrystallites. Photo-electrochemical investigations show upon cathodic polarization light-induced hydrogen evolution for a wide range of proton concentrations in the aqueous electrolyte. Additionally, Synchrotron radiation based photoelectron spectroscopy has been applied to study the surface/near-surface chemical composition of the utilized g-C3N4 film photocathodes. For the first time it is shown that g-C3N4 films can be successfully applied as photoelectrochemical material for light induced hydrogen evolution. [1]X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nature Mat. 2009, 8, 76-80.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا