ﻻ يوجد ملخص باللغة العربية
One of the milestones of quantum mechanics is Bohrs complementarity principle. It states that a single quantum can exhibit a particle-like emph{or} a wave-like behaviour, but never both at the same time. These are mutually exclusive and complementary aspects of the quantum system. This means that we need distinct experimental arrangements in order to measure the particle or the wave nature of a physical system. One of the most known representations of this principle is the single-photon Mach-Zehnder interferometer. When the interferometer is closed an interference pattern is observed (wave aspect of the quantum) while if it is open, the quantum behaves like a particle. Here, using a molecular quantum information processor and employing nuclear magnetic resonant (NMR) techniques, we analyze the quantum version of this principle by means of an interferometer that is in a quantum superposition of being closed and open, and confirm that we can indeed measure both aspects of the system with the same experimental apparatus. More specifically, we observe with a single apparatus the interference between the particle and the wave aspects of a quantum system.
Complementarity restricts the accuracy with which incompatible quantum observables can be jointly measured. Despite popular conception, the Heisenberg uncertainty relation does not quantify this principle. We report the experimental verification of u
To employ a quantum device, the performance of the quantum gates in the device needs to be evaluated first. Since the dimensionality of a quantum gate grows exponentially with the number of qubits, evaluating the performance of a quantum gate is a ch
What are the consequences ... that Fermi particles cannot get into the same state ... R. P. Feynman wrote of the Pauli exclusion principle, In fact, almost all the peculiarities of the material world hinge on this wonderful fact. In 1972 Borland and
The twin-field (TF) quantum key distribution (QKD) protocol and its variants are highly attractive because they can beat the well-known rate-loss limit (i.e., the PLOB bound) for QKD protocols without quantum repeaters. In this paper, we perform a pr
In this document we shows a first implementation and some preliminary results of a new theory, facing Machine Learning problems in the frameworks of Classical Mechanics and Variational Calculus. We give a general formulation of the problem and then w