ترغب بنشر مسار تعليمي؟ اضغط هنا

Proof-of-principle experimental demonstration of twin-field type quantum key distribution

81   0   0.0 ( 0 )
 نشر من قبل Xiaoqing Zhong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف X. Zhong




اسأل ChatGPT حول البحث

The twin-field (TF) quantum key distribution (QKD) protocol and its variants are highly attractive because they can beat the well-known rate-loss limit (i.e., the PLOB bound) for QKD protocols without quantum repeaters. In this paper, we perform a proof-of-principle experimental demonstration of TF-QKD based on the protocol proposed by Curty et al. which removes from the original TF-QKD scheme the need for post-selection on the matching of a global phase, and can deliver nearly an order of magnitude higher secret key rate. Furthermore, we overcome the major difficulty in the practical implementation of TF-QKD, namely, the need to stabilize the phase of the quantum state over kilometers of fiber. A Sagnac loop structure is utilized to ensure excellent phase stability between the different parties. Using decoy states, we demonstrate secret-key generation rates that beat the PLOB bound when the channel loss is above 40 dB.

قيم البحث

اقرأ أيضاً

To employ a quantum device, the performance of the quantum gates in the device needs to be evaluated first. Since the dimensionality of a quantum gate grows exponentially with the number of qubits, evaluating the performance of a quantum gate is a ch allenging task. Recently, a scheme called quantum gate verification (QGV) has been proposed, which can verifies quantum gates with near-optimal efficiency. In this work, we implement a proof-of-principle optical experiment to demonstrate this QGV scheme. We show that for a single-qubit quantum gate, only $sim400$ samples are needed to confirm the fidelity of the quantum gate to be at least $97%$ with a $99%$ confidence level using the QGV method, while at least $sim5000$ samples are needed to achieve the same result using the standard quantum process tomography method. The QGV method validated by this work has the potential to be widely used for the evaluation of quantum devices in various quantum information applications.
Time coding quantum key distribution with coherent faint pulses is experimentally demonstrated. A measured 3.3 % quantum bit error rate and a relative contrast loss of 8.4 % allow a 0.49 bit/pulse advantage to Bob.
Twin-Field (TF) quantum key distribution (QKD) is a major candidate to be the new benchmark for far-distance QKD implementations, since its secret key rate can overcome the repeaterless bound by means of a simple interferometric measurement. Many var iants of the original protocol have been recently proven to be secure. Here, we focus on the TF-QKD type protocol proposed by Curty et al [preprint arXiv:1807.07667], which can provide a high secret key rate and whose practical feasibility has been demonstrated in various recent experiments. The security of this protocol relies on the estimation of certain detection probabilities (yields) through the decoy-state technique. Analytical bounds on the relevant yields have been recently derived assuming that both parties use the same set of decoy intensities, thus providing sub-optimal key rates in asymmetric-loss scenarios. Here we derive new analytical bounds when the parties use either three or four independent decoy intensity settings each. With the new bounds we optimize the protocols performance in asymmetric-loss scenarios and show that the protocol is robust against uncorrelated intensity fluctuations affecting the parties lasers.
Twin-Field Quantum Key Distribution(TF-QKD) protocol and its variants, such as Phase-Matching QKD(PM-QKD), sending or not QKD(SNS-QKD) and No Phase Post-Selection TF-QKD(NPP-TFQKD), are very promising for long-distance applications. However, there ar e still some gaps between theory and practice in these protocols. Concretely, a finite-key size analysis is still missing, and the intensity fluctuations are not taken into account. To address the finite-key size effect, we first give the key rate of NPP-TFQKD against collective attack in finite-key size region and then prove it can be against coherent attack. To deal with the intensity fluctuations, we present an analytical formula of 4-intensity decoy state NPP-TFQKD and a practical intensity fluctuation model. Finally, through detailed simulations, we show NPP-TFQKD can still keep its superiority of high key rate and long achievable distance.
Twin-field quantum key distribution (TF-QKD) and its variant protocols are highly attractive due to the advantage of overcoming the rate-loss limit for secret key rates of point-to-point QKD protocols. For variations of TF-QKD, the key point to ensur e security is switching randomly between a code mode and a test mode. Among all TF-QKD protocols, their code modes are very different, e.g. modulating continuous phases, modulating only two opposite phases, and sending or not sending signal pulses. Here we show that, by discretizing the number of global phases in the code mode, we can give a unified view on the first two types of TF-QKD protocols, and demonstrate that increasing the number of discrete phases extends the achievable distance, and as a trade-off, lowers the secret key rate at short distances due to the phase post-selection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا