ﻻ يوجد ملخص باللغة العربية
Complementarity restricts the accuracy with which incompatible quantum observables can be jointly measured. Despite popular conception, the Heisenberg uncertainty relation does not quantify this principle. We report the experimental verification of universally valid complementarity relations, including an improved relation derived here. We exploit Einstein-Poldolsky-Rosen correlations between two photonic qubits, to jointly measure incompatible observables of one. The product of our measurement inaccuracies is low enough to violate the widely used, but not universally valid, Arthurs-Kelly relation.
Elucidating the energy transfer between a quantum system and a reservoir is a central issue in quantum non-equilibrium thermodynamics, which could provide novel tools to engineer quantum-enhanced heat engines. The lack of information on the reservoir
We present a quantum circuit that implements a non-demolition measurement of complementary single- and bi-partite properties of a two-qubit system: entanglement and single-partite visibility and predictability. The system must be in a pure state with
One of the milestones of quantum mechanics is Bohrs complementarity principle. It states that a single quantum can exhibit a particle-like emph{or} a wave-like behaviour, but never both at the same time. These are mutually exclusive and complementary
We establish a rigorous quantitative connection between (i) the interferometric duality relation for which-way information and fringe visibility and (ii) Heisenbergs uncertainty relation for position and modular momentum. We apply our theory to atom
The experimental verification of quantum fluctuation relations for driven open quantum system is currently a challenge, due to the conceptual and operative difficulty of distinguishing work and heat. The Nitrogen-Vacancy center in diamond has been re