In this document we shows a first implementation and some preliminary results of a new theory, facing Machine Learning problems in the frameworks of Classical Mechanics and Variational Calculus. We give a general formulation of the problem and then we studies basic behaviors of the model on simple practical implementations.
One of the milestones of quantum mechanics is Bohrs complementarity principle. It states that a single quantum can exhibit a particle-like emph{or} a wave-like behaviour, but never both at the same time. These are mutually exclusive and complementary
aspects of the quantum system. This means that we need distinct experimental arrangements in order to measure the particle or the wave nature of a physical system. One of the most known representations of this principle is the single-photon Mach-Zehnder interferometer. When the interferometer is closed an interference pattern is observed (wave aspect of the quantum) while if it is open, the quantum behaves like a particle. Here, using a molecular quantum information processor and employing nuclear magnetic resonant (NMR) techniques, we analyze the quantum version of this principle by means of an interferometer that is in a quantum superposition of being closed and open, and confirm that we can indeed measure both aspects of the system with the same experimental apparatus. More specifically, we observe with a single apparatus the interference between the particle and the wave aspects of a quantum system.
We formulate an action principle for the operator product expansion (OPE) describing how a given OPE coefficient changes under a deformation induced by a marginal or relevant operator. Our action principle involves no ad-hoc regulator or renormalizat
ion and applies to general (Euclidean) quantum field theories. It implies a natural definition of the renormalization group flow for the OPE coefficients and of coupling constants. When applied to the case of conformal theories, the action principle gives a system of coupled dynamical equations for the conformal data. The last result has also recently been derived (without considering tensor structures) independently by Behan (arXiv:1709.03967) using a different argument. Our results were previously announced and outlined at the meetings In memoriam Rudolf Haag in September 2016 and the Wolfhart Zimmermann memorial symposium in May 2017.
The Principle of Least Action (PLA) in Optics can be confusing to students, in part due to the Calculus of Variations, but also because of the subtleties of the actual principle. To address this problem, three simulations of the PLA are presented so
students can learn the Action Principle in an experiential and interactive manner. Simulations such as MITs OpenRelativity and PhETs Quantum Mechanics have become a popular pedagogical tool to demystify abstract physical phenomena. This paper aims to help undergraduate students understand the Action Principle by introducing three numerical simulations: light reflecting in equal angles, light refracting in different mediums, and light moving between two points in the least time. The interactive simulations discussed in this paper are available here.
This short paper examines some of the ongoing research at the UMB Data and Society Lab hosted at the Faculty of Political Science and International Relations at Matej Bel University. It begins with an introduction on the necessity of security threat
identification on social networking services (SNSs), done by states. The paper follows with a general overview of selected projects of the Lab in this field, and afterwards it introduces a use case study focused on the announcement of the UK snap general election 2017. The main aim of this paper is to demonstrate some of the possibilities of social networking services analysis in the field of international relations, with an emphasis on disinformation and the necessity of identifying novel digital actors in Slovakia. We also outline an easy custom system tasked to collect social media data, and afterwards process it using various cognitive analytic methods.
We elaborate on the role of higher-derivative curvature invariants as a quantum selection mechanism of regular spacetimes in the framework of the Lorentzian path integral approach to quantum gravity. We show that for a large class of black hole metri
cs prominently regular there are higher-derivative curvature invariants associated with a singular term in the action. Therefore, according to the finite action principle applied to a general higher-derivative gravity model, not only singular spacetimes but also some of the regular ones seem to not contribute to the path integral.