ﻻ يوجد ملخص باللغة العربية
From general considerations of spin-symmetry breaking associated with (anti-)ferromagnetism in metallic systems with Coulomb repulsion, we obtain interesting and simple all-order rules involving the ratios of the densities of states. These are exact for ferromagnetism under reasonable conditions, and nearly exact for anti-ferromagnetism. In the case of ferromagnetism, the comparison with the available experimental and theoretical numbers yields favourable results.
We discuss the consequences of spin current conservation in systems with SU(2) spin symmetry that is spontaneously broken by partial magnetic order, using a momentum-space approach. The long-distance interaction is mediated by Goldstone magnons, whos
We study the effect of interlayer Coulomb interaction in an electronic double layer. Assuming that each of the layers consists of a bipartite lattice, a sufficiently strong interlayer interaction leads to an interlayer pairing of electrons with a sta
We study a lattice bipolaron on a staggered triangular ladder and triangular and hexagonal lattices with both long-range electron-phonon interaction and strong Coulomb repulsion using a novel continuous-time quantum Monte-Carlo (CTQMC) algorithm exte
We observe the effect of non-zero magnetization m onto the superconducting ground state of the one dimensional repulsive Hubbard model with correlated hopping X. For t/2 < X < 2t/3, the system first manifests Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) o
Atomic layers deposited on semiconductor substrates introduce a platform for the realization of the extended electronic Hubbard model, where the consideration of electronic repulsion beyond the onsite term is paramount. Recently, the onset of superco