ترغب بنشر مسار تعليمي؟ اضغط هنا

Pairing transition in a double layer with interlayer Coulomb repulsion

96   0   0.0 ( 0 )
 نشر من قبل Andreas Sinner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effect of interlayer Coulomb interaction in an electronic double layer. Assuming that each of the layers consists of a bipartite lattice, a sufficiently strong interlayer interaction leads to an interlayer pairing of electrons with a staggered order parameter. We show that the correlated pairing state is dual to the excitonic pairing state with uniform order parameter in an electron-hole double layer. The interlayer pairing of electrons leads to strong current-current correlations between the layers. We also analyze the interlayer conductivity and the fluctuations of the order parameter, which consists of a gapped and a gapless mode.



قيم البحث

اقرأ أيضاً

We study a lattice bipolaron on a staggered triangular ladder and triangular and hexagonal lattices with both long-range electron-phonon interaction and strong Coulomb repulsion using a novel continuous-time quantum Monte-Carlo (CTQMC) algorithm exte nded to the Coulomb-Frohlich model with two particles. The algorithm is preceded by an exact integration over phonon degrees of freedom, and as such is extremely efficient. The bipolaron effective mass and bipolaron radius are computed. Lattice bipolarons on such lattices have a novel crablike motion, and are small but very light in a wide range of parameters, which leads to a high Bose-Einstein condensation temperature. We discuss the relevance of our results with current experiments on cuprate high-temperature superconductors and propose a route to room temperature superconductivity.
We study the interlayer pairing states in layered systems of two different 2d electronic subsystems, one with relativistic linear and the other with non-relativistic parabolic spectrum. The complex order parameter of the paired state has a two compon ent structure. We investigate the pairing state formation on the mean-field level, determine the critical interaction strength and evaluate the effective potential. The anisotropic three-band spectrum of quasiparticles depends explicitly on the phase difference of the order parameter components, rotates in momentum space as it changes. It is subject to the strong band deformation due to the pairing. It leads to the fusion and hybridization of initially decoupled bands. The quasiparticle spectrum has the shape of deformed Dirac cones in the vicinity of the two touching points between neighboring bands. The density of states exhibits a number of specific features due to band deformation, such as a van Hove singularity.
Observation of robust superconductivity in some of the iron based superconductors in the vicinity of a Lifshitz point where a spin density wave instability is suppressed as the {hole} band drops below the Fermi energy raise questions for spin-fluctua tion theories. Here we discuss spin-fluctuation pairing for a bilayer Hubbard model, which goes through such a Lifshitz transition. We find s$_pm$ pairing with a transition temperature that peaks beyond the Lifshitz point and a gap function that has essentially the same magnitude but opposite sign on the incipient hole band as it does on the electron band that has a Fermi surface.
We study the properties of two electrons with Coulomb interactions in a tight-binding model of La-based cuprate superconductors. This tight-binding model is characterized by long-range hopping obtained previously by advanced quantum chemistry computa tions. We show analytically and numerically that the Coulomb repulsion leads to a formation of compact pairs propagating through the whole system. The mechanism of pair formation is related to the emergence of an effective narrow energy band for Coulomb electron pairs with conserved total pair energy and momentum. The dependence of the pair formation probability on an effective filling factor is obtained with a maximum around a filling factor of 20 (or 80) percent. The comparison with the case of the nearest neighbor tight-binding model shows that the long-range hopping provides an increase of the phase space volume with high pair formation probability. We conjecture that the Coulomb electron pairs discussed here may play a role in high temperature superconductivity.
We investigate the superconductivity of 3D Luttinger semimetals, such as YPtBi, where Cooper pairs are constituted of spin-3/2 quasiparticles. Various pairing mechanisms have already been considered for these semimetals, such as from polar phonons mo des, and in this work we explore pairing from the screened electron-electron Coulomb repulsion. In these materials, the small Fermi energy and the spin-orbit coupling strongly influence how charge fluctuations can mediate pairing. We find the superconducting critical temperature as a function of doping for an s-wave order parameter, and determine its sensitivity to changes in the dielectric permittivity. Also, we discuss how order parameters other than s-wave may lead to a larger critical temperature, due to spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا