ترغب بنشر مسار تعليمي؟ اضغط هنا

Superlight small bipolarons in the presence of strong Coulomb repulsion

106   0   0.0 ( 0 )
 نشر من قبل Jim Hague
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a lattice bipolaron on a staggered triangular ladder and triangular and hexagonal lattices with both long-range electron-phonon interaction and strong Coulomb repulsion using a novel continuous-time quantum Monte-Carlo (CTQMC) algorithm extended to the Coulomb-Frohlich model with two particles. The algorithm is preceded by an exact integration over phonon degrees of freedom, and as such is extremely efficient. The bipolaron effective mass and bipolaron radius are computed. Lattice bipolarons on such lattices have a novel crablike motion, and are small but very light in a wide range of parameters, which leads to a high Bose-Einstein condensation temperature. We discuss the relevance of our results with current experiments on cuprate high-temperature superconductors and propose a route to room temperature superconductivity.



قيم البحث

اقرأ أيضاً

Recent angle-resolved photoemission spectroscopy (ARPES) has identified that a finite-range Frohlich electron-phonon interaction (EPI) with c-axis polarized optical phonons is important in cuprate superconductors, in agreement with an earlier proposa l by Alexandrov and Kornilovitch. The estimated unscreened EPI is so strong that it could easily transform doped holes into mobile lattice bipolarons in narrow-band Mott insulators such as cuprates. Applying a continuous-time quantum Monte-Carlo algorithm (CTQMC) we compute the total energy, effective mass, pair radius, number of phonons and isotope exponent of lattice bipolarons in the region of parameters where any approximation might fail taking into account the Coulomb repulsion and the finite-range EPI. The effects of modifying the interaction range and different lattice geometries are discussed with regards to analytical strong-coupling/non-adiabatic results. We demonstrate that bipolarons can be simultaneously small and light, provided suitable conditions on the electron-phonon and electron-electron interaction are satisfied. Such light small bipolarons are a necessary precursor to high-temperature Bose-Einstein condensation in solids. The light bipolaron mass is shown to be universal in systems made of triangular plaquettes, due to a novel crab-like motion. Another surprising result is that the triplet-singlet exchange energy is of the first order in the hopping integral and triplet bipolarons are heavier than singlets in certain lattice structures at variance with intuitive expectations. Finally, we identify a range of lattices where superlight small bipolarons may be formed, and give estimates for their masses in the anti-adiabatic approximation.
We report analytical and numerical results on the two-particle states of the polaronic t-Jp model derived recently with realistic Coulomb and electron-phonon (Frohlich) interactions in doped polar insulators. Eigenstates and eigenvalues are calculate d for two different geometries. Our results show that the ground state is a bipolaronic singlet, made up of two polarons. The bipolaron size increases with increasing ratio of the polaron hopping integral t to the exchange interaction Jp but remains small compared to the system size in the whole range 0<t/Jp<1. Furthermore, the model exhibits a phase transition to a superconducting state with a critical temperature well in excess of 100K. In the range t/Jp<1, there are distinct charge and spin gaps opening in the density of states, specific heat, and magnetic susceptibility well above Tc.
We study the effect of interlayer Coulomb interaction in an electronic double layer. Assuming that each of the layers consists of a bipartite lattice, a sufficiently strong interlayer interaction leads to an interlayer pairing of electrons with a sta ggered order parameter. We show that the correlated pairing state is dual to the excitonic pairing state with uniform order parameter in an electron-hole double layer. The interlayer pairing of electrons leads to strong current-current correlations between the layers. We also analyze the interlayer conductivity and the fluctuations of the order parameter, which consists of a gapped and a gapless mode.
We investigate the superconductivity of 3D Luttinger semimetals, such as YPtBi, where Cooper pairs are constituted of spin-3/2 quasiparticles. Various pairing mechanisms have already been considered for these semimetals, such as from polar phonons mo des, and in this work we explore pairing from the screened electron-electron Coulomb repulsion. In these materials, the small Fermi energy and the spin-orbit coupling strongly influence how charge fluctuations can mediate pairing. We find the superconducting critical temperature as a function of doping for an s-wave order parameter, and determine its sensitivity to changes in the dielectric permittivity. Also, we discuss how order parameters other than s-wave may lead to a larger critical temperature, due to spin-orbit coupling.
Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model are used to study the stability and dynamics of $d$-wave pairing when a near neighbor Coulomb repulsion $V$ is present in addition to the on-site Coul omb repulsion $U$. We find that $d$-wave pairing and the superconducting transition temperature $T_c$ are only weakly suppressed as long as $V$ does not exceed $U/2$. This stability is traced to the strongly retarded nature of pairing that allows the $d$-wave pairs to minimize the repulsive effect of $V$. When $V$ approaches $U/2$, large momentum charge fluctuations are found to become important and to give rise to a more rapid suppression of $d$-wave pairing and $T_c$ than for smaller $V$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا