ﻻ يوجد ملخص باللغة العربية
We observe the effect of non-zero magnetization m onto the superconducting ground state of the one dimensional repulsive Hubbard model with correlated hopping X. For t/2 < X < 2t/3, the system first manifests Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) oscillations in the pair-pair correlations. For m = m1 a kinetic energy driven macroscopic phase separation into low-density superconducting domains and high-density polarized walls takes place. For m > m2 the domains fully localize, and the system eventually becomes a ferrimagnetic insulator.
Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model are used to study the stability and dynamics of $d$-wave pairing when a near neighbor Coulomb repulsion $V$ is present in addition to the on-site Coul
The repulsive Hubbard model has been immensely useful in understanding strongly correlated electron systems, and serves as the paradigmatic model of the field. Despite its simplicity, it exhibits a strikingly rich phenomenology which is reminiscent o
We extend previous real-space Hartree-Fock studies of static stripe stability to determine the phase diagram of the Hubbard model with anisotropic nearest-neighbor hopping t, by varying the on-site Coulomb repulsion U and investigating locally stable
The dualism between superconductivity and charge/spin modulations (the so-called stripes) dominates the phase diagram of many strongly-correlated systems. A prominent example is given by the Hubbard model, where these phases compete and possibly coex
The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both sin