ﻻ يوجد ملخص باللغة العربية
We show how few-particle Greens functions can be calculated efficiently for models with nearest-neighbor hopping, for infinite lattices in any dimension. As an example, for one dimensional spinless fermions with both nearest-neighbor and second nearest-neighbor interactions, we investigate the ground states for up to 5 fermions. This allows us not only to find the stability region of various bound complexes, but also to infer the phase diagram at small but finite concentrations.
We introduce a new mathematical object, the fermionant ${mathrm{Ferm}}_N(G)$, of type $N$ of an $n times n$ matrix $G$. It represents certain $n$-point functions involving $N$ species of free fermions. When N=1, the fermionant reduces to the determin
It is shown that the Greens function on a finite lattice in arbitrary space dimension can be obtained from that of an infinite lattice by means of translation operator. Explicit examples are given for one- and two-dimensional lattices.
Two-particle Greens functions and the vertex functions play a critical role in theoretical frameworks for describing strongly correlated electron systems. However, numerical calculations at two-particle level often suffer from large computation time
We reexamine the Yang-Yang-Takahashi method of deriving the thermodynamic Bethe ansatz equations which describe strongly correlated electron systems of fundamental physical interest, such as the Hubbard, $s-d$ exchange (Kondo) and Anderson models. It
We adapt the Coupled Cluster Method to solid state strongly correlated lattice Hamiltonians extending the Coupled Cluster linear response method to the calculation of electronic spectra and obtaining the space-time Fourier transforms of generic Green