ﻻ يوجد ملخص باللغة العربية
We reexamine the Yang-Yang-Takahashi method of deriving the thermodynamic Bethe ansatz equations which describe strongly correlated electron systems of fundamental physical interest, such as the Hubbard, $s-d$ exchange (Kondo) and Anderson models. It is shown that these equations contain some additional terms which may play an important role in the physics of the systems.
We introduce a new mathematical object, the fermionant ${mathrm{Ferm}}_N(G)$, of type $N$ of an $n times n$ matrix $G$. It represents certain $n$-point functions involving $N$ species of free fermions. When N=1, the fermionant reduces to the determin
Strongly correlated electron systems such as the rare-earth nickelates (RNiO3, R = rare-earth element) can exhibit synapse-like continuous long term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coup
A number of recent experiments report the low-temperature thermopower $alpha$ and specific heat coefficients $gamma=C_V/T$ of strongly correlated electron systems. Describing the charge and heat transport in a thermoelectric by transport equations, a
Recent progress in neutron spin-echo spectroscopy by means of longitudinal Modulation of IntEnsity with Zero Effort (MIEZE) is reviewed. Key technical characteristics are summarized which highlight that the parameter range accessible in momentum and
In many cases the standard perturbation approach appears to be too simple to describe precisely the angle resolved photoemission spectrum of strongly correlated electron system. In particular, to describe the momentum asymmetry observed in photoemiss