ﻻ يوجد ملخص باللغة العربية
We introduce a new mathematical object, the fermionant ${mathrm{Ferm}}_N(G)$, of type $N$ of an $n times n$ matrix $G$. It represents certain $n$-point functions involving $N$ species of free fermions. When N=1, the fermionant reduces to the determinant. The partition function of the repulsive Hubbard model, of geometrically frustrated quantum antiferromagnets, and of Kondo lattice models can be expressed as fermionants of type N=2, which naturally incorporates infinite on-site repulsion. A computation of the fermionant in polynomial time would solve many interesting fermion sign problems.
We present the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quant
We reexamine the Yang-Yang-Takahashi method of deriving the thermodynamic Bethe ansatz equations which describe strongly correlated electron systems of fundamental physical interest, such as the Hubbard, $s-d$ exchange (Kondo) and Anderson models. It
Recent progress in neutron spin-echo spectroscopy by means of longitudinal Modulation of IntEnsity with Zero Effort (MIEZE) is reviewed. Key technical characteristics are summarized which highlight that the parameter range accessible in momentum and
A number of recent experiments report the low-temperature thermopower $alpha$ and specific heat coefficients $gamma=C_V/T$ of strongly correlated electron systems. Describing the charge and heat transport in a thermoelectric by transport equations, a
We show how few-particle Greens functions can be calculated efficiently for models with nearest-neighbor hopping, for infinite lattices in any dimension. As an example, for one dimensional spinless fermions with both nearest-neighbor and second neare