ﻻ يوجد ملخص باللغة العربية
The walk distances in graphs are defined as the result of appropriate transformations of the $sum_{k=0}^infty(tA)^k$ proximity measures, where $A$ is the weighted adjacency matrix of a connected weighted graph and $t$ is a sufficiently small positive parameter. The walk distances are graph-geodetic, moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter $t$ approaches its limiting values. In this paper, simple expressions for the long walk distance are obtained. They involve the generalized inverse, minors, and inverses of submatrices of the symmetric irreducible singular M-matrix ${cal L}=rho I-A,$ where $rho$ is the Perron root of $A.$
By rectangle packing we mean putting a set of rectangles into an enclosing rectangle, without any overlapping. We begin with perfect rectangle packing problems, then prove two continuity properties for parallel rectangle packing problems, and discuss
A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. Given a graph $G$ and weight function $w: V(G) to mathbb{Q}_{geq 0}$, the Split Vertex Deletion (SVD) problem asks to find a minimum weight set of vertices $
We prove that there exists a function $f(k)=mathcal{O}(k^2 log k)$ such that for every $C_4$-free graph $G$ and every $k in mathbb{N}$, $G$ either contains $k$ vertex-disjoint holes of length at least $6$, or a set $X$ of at most $f(k)$ vertices such
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$
A propositional logic sentence in conjunctive normal form that has clauses of length two (a 2-CNF) can be associated with a multigraph in which the vertices correspond to the variables and edges to clauses. We first show that every such sentence that