ﻻ يوجد ملخص باللغة العربية
A propositional logic sentence in conjunctive normal form that has clauses of length two (a 2-CNF) can be associated with a multigraph in which the vertices correspond to the variables and edges to clauses. We first show that every such sentence that has been reduced, that is, which is unchanged under application of certain tautologies, is equisatisfiable to a 2-CNF whose associated multigraph is, in fact, a simple graph. Our main result is a complete characterization of graphs that can support unsatisfiable 2-CNF sentences. We show that a simple graph can support an unsatisfiable reduced 2-CNF sentence if and only if it contains any one of four specific small graphs as a topological minor. Equivalently, all reduced 2-CNF sentences supported on a given simple graph are satisfiable if and only if all subdivisions of those four graphs are forbidden as subgraphs of of the original graph. We conclude with a discussion of why the Robertson-Seymour graph minor theorem does not apply in our approach.
An edge-coloring of a graph $G$ with colors $1,ldots,t$ is an emph{interval $t$-coloring} if all colors are used, and the colors of edges incident to each vertex of $G$ are distinct and form an integer interval. It is well-known that there are graphs
Graham and Pollak showed that the vertices of any graph $G$ can be addressed with $N$-tuples of three symbols, such that the distance between any two vertices may be easily determined from their addresses. An addressing is optimal if its length $N$ i
A well-known combinatorial theorem says that a set of n non-collinear points in the plane determines at least n distinct lines. Chen and Chvatal conjectured that this theorem extends to metric spaces, with an appropriated definition of line. In this
A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with col
We introduce a new subclass of chordal graphs that generalizes split graphs, which we call well-partitioned chordal graphs. Split graphs are graphs that admit a partition of the vertex set into cliques that can be arranged in a star structure, the le