ﻻ يوجد ملخص باللغة العربية
We study dynamics of two coupled periodically driven oscillators. An important example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the approximate effective equation (derived in our earlier papers) are determined within the Krylov-Bogoliubov-Mitropolsky approach to compute the amplitude profiles $A(Omega)$. In the present paper we investigate metamorphoses of the function $A(Omega)$ induced by changes of the control parameters in the case of 1:3 resonances.
We study dynamics of two coupled periodically driven oscillators. Important example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the
We study dynamics of two coupled periodically driven oscillators. The internal motion is separated off exactly to yield a nonlinear fourth-order equation describing inner dynamics. Periodic steady-state solutions of the fourth-order equation are dete
This paper addresses the amplitude and phase dynamics of a large system non-linear coupled, non-identical damped harmonic oscillators, which is based on recent research in coupled oscillation in optomechanics. Our goal is to investigate the existence
We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational instability. By applying a suitable transformation, we map the forced/damped Nonlinear Schrodinger (NLS) equation into the standard NLS with constant c
Using the method of adiabatic invariants and the Born-Oppenheimer approximation, we have successfully got the excited-state wave functions for a pair of coupled oscillators in the so-called textit{semiquantum chaos}. Some interesting characteristics