ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled nonlinear oscillators: metamorphoses of amplitude profiles. The case of the approximate effective equation

116   0   0.0 ( 0 )
 نشر من قبل Andrzej Okninski
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study dynamics of two coupled periodically driven oscillators. Important example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the approximate effective equation are determined within the Krylov-Bogoliubov-Mitropolsky approach to get the amplitude profiles $AOmega) $. Dependence of the amplitude $A$ of nonlinear resonances on the frequency $ Omega $ is much more complicated than in the case of one Duffing oscillator and hence new nonlinear phenomena are possible. In the present paper we study metamorphoses of the function $A(Omega) $ induced by changes of the control parameters.



قيم البحث

اقرأ أيضاً

We study dynamics of two coupled periodically driven oscillators. An important example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the approximate effective equation (derived in our earlier papers) are determined within the Krylov-Bogoliubov-Mitropolsky approach to compute the amplitude profiles $A(Omega)$. In the present paper we investigate metamorphoses of the function $A(Omega)$ induced by changes of the control parameters in the case of 1:3 resonances.
We study dynamics of two coupled periodically driven oscillators. The internal motion is separated off exactly to yield a nonlinear fourth-order equation describing inner dynamics. Periodic steady-state solutions of the fourth-order equation are dete rmined within the Krylov-Bogoliubov-Mitropolsky approach - we compute the amplitude profiles, which from mathematical point of view are algebraic curves. In the present paper we investigate metamorphoses of amplitude profiles induced by changes of control parameters near singular points of these curves. It follows that dynamics changes qualitatively in the neighbourhood of a singular point.
168 - P. Cudmore , C.A. Holmes 2014
This paper addresses the amplitude and phase dynamics of a large system non-linear coupled, non-identical damped harmonic oscillators, which is based on recent research in coupled oscillation in optomechanics. Our goal is to investigate the existence and stability of collective behaviour which occurs due to a play-off between the distribution of individual oscillator frequency and the type of nonlinear coupling. We show that this system exhibits synchronisation, where all oscillators are rotating at the same rate, and that in the synchronised state the system has a regular structure related to the distribution of the frequencies of the individual oscillators. Using a geometric description we show how changes in the non-linear coupling function can cause pitchfork and saddle-node bifurcations which create or destroy stable and unstable synchronised solutions. We apply these results to show how in-phase and anti-phase solutions are created in a system with a bi-modal distribution of frequencies.
We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational instability. By applying a suitable transformation, we map the forced/damped Nonlinear Schrodinger (NLS) equation into the standard NLS with constant c oefficients. The transformation is valid as long as |{Gamma}t| ll 1, with {Gamma} the growth/damping rate of the waves due to the wind/dissipation. Approximate rogue wave solutions of the equation are presented and discussed. The results shed some lights on the effects of wind and dissipation on the formation of rogue waves.
140 - Gang Wu , Jinming Dong 2007
Using the method of adiabatic invariants and the Born-Oppenheimer approximation, we have successfully got the excited-state wave functions for a pair of coupled oscillators in the so-called textit{semiquantum chaos}. Some interesting characteristics in the textit{Fourier spectra} of the wave functions and its textit{Correlation Functions} in the regular and chaos states have been found, which offers a new way to distinguish the regular and chaotic states in quantum system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا