ﻻ يوجد ملخص باللغة العربية
Using the method of adiabatic invariants and the Born-Oppenheimer approximation, we have successfully got the excited-state wave functions for a pair of coupled oscillators in the so-called textit{semiquantum chaos}. Some interesting characteristics in the textit{Fourier spectra} of the wave functions and its textit{Correlation Functions} in the regular and chaos states have been found, which offers a new way to distinguish the regular and chaotic states in quantum system.
The chaotic nature of a storage-ring Free Electron Laser (FEL) is investigated. The derivation of a low embedding dimension for the dynamics allows the low-dimensionality of this complex system to be observed, whereas its unpredictability is demonstr
We numerically investigate the characteristics of chaos evolution during wave packet spreading in two typical one-dimensional nonlinear disordered lattices: the Klein-Gordon system and the discrete nonlinear Schr{o}dinger equation model. Completing p
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchro
We explore the coherent dynamics in a small network of three coupled parametric oscillators and demonstrate the effect of frustration on the persistent beating between them. Since a single-mode parametric oscillator represents an analog of a classica
A feasible model is introduced that manifests phenomena intrinsic to iterative complex analytic maps (such as the Mandelbrot set and Julia sets). The system is composed of two coupled alternately excited oscillators (or self-sustained oscillators). T