ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-faint dwarf galaxies as a test of early enrichment and metallicity-dependent star formation

353   0   0.0 ( 0 )
 نشر من قبل Konstantinos Tassis
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tight relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because the abundance of molecular hydrogen is sensitive to the abundance of dust, which catalyzes the formation of H_2 and helps to shield it from dissociating radiation. In this study we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H_2-based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption time scale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by population III stars to levels Z ~ 0.01 Z_sun in dense, star forming regions of early galaxies.



قيم البحث

اقرأ أيضاً

It has recently been shown that galaxy formation models within the LambdaCDM cosmology predict that, compared to the observed population, small galaxies (with stellar masses < 10^{11} M_sun) form too early, are too passive since z ~ 3 and host too ol d stellar populations at z=0. We then expect an overproduction of small galaxies at z > 4 that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the MORGANA galaxy formation model and GRASIL spectro-photometric + radiative transfer code to generate mock catalogues of deep fields observed with HST-ACS. We add observational noise and the effect of Lyman-alpha emission, and perform color-color selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i-dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of z_{850} ~ 27 V-dropouts at z ~ 5. We quantify the properties of these excess galaxies and discuss the implications: these galaxies are hosted in dark matter halos with circular velocities in excess of 100 km s^{-1}, and their suppression may require a deep re-thinking of stellar feedback processes taking place in galaxy formation.
We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs app ear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.
We present the color-magnitude diagrams and star formation histories (SFHs) of seven ultra-faint dwarf galaxies: Horologium 1, Hydra 2, Phoenix 2, Reticulum 2, Sagittarius 2, Triangulum 2, and Tucana 2, derived from high-precision Hubble Space Telesc ope photometry. We find that the SFH of each galaxy is consistent with them having created at least 80% of the stellar mass by $zsim6$. For all galaxies, we find quenching times older than 11.5 Gyr ago, compatible with the scenario in which reionization suppresses the star formation of small dark matter halos. However, our analysis also reveals some differences in the SFHs of candidate Magellanic Cloud satellites, i.e., galaxies that are likely satellites of the Large Magellanic Cloud and that entered the Milky Way potential only recently. Indeed, Magellanic satellites show quenching times about 600 Myr more recent with respect to those of other Milky Way satellites, on average, even though the respective timings are still compatible within the errors. This finding is consistent with theoretical models that suggest that satellites SFHs may depend on their host environment at early times, although we caution that within the error bars all galaxies in our sample are consistent with being quenched at a single epoch.
In the last decade, extended stellar clusters with masses in the range from a few 10^4 to 10^8 M_sun have been found in various types of galaxies in different environments. Objects with masses comparable to normal globular clusters (GCs) are called e xtended clusters (ECs), while objects with masses in the dwarf galaxy regime are called ultra-compact dwarf galaxies (UCDs). In heavily interacting galaxies star clusters tend to form in larger conglomerations called star cluster complexes (CCs). In this work we systematically scan a suitable parameter space for CCs and perform numerical simulations to study their further fate. The varied sizes and masses of the CCs cover a matrix of 5x6 values with CC Plummer radii between 10 - 160 pc and CC masses between 10^5.5 - 10^8 M_sun, which are consistent with observed CC parameters. The CCs of the parametric study are on orbits with distances between 20 kpc and 60 kpc. In addition, we studied also the evolution of CCs on a circular orbit at a distance of 60 kpc to verify that also extremely extended ECs and UCDs can be explained by our formation scenario. All 54 simulations end up with stable merger objects, wherein 26 to 97% of the initial CC mass is bound. The objects show a general trend of increasing effective radii with increasing mass. Despite the large range of input Plummer radii of the CCs (10 to 160 pc) the effective radii of the merger objects are constrained to values between 10 and 20 pc at the low mass end and to values between 15 and 55 pc at the high mass end. The structural parameters of the models are comparable to those of the observed ECs and UCDs. The results of the circular orbits demonstrate that even very extended objects like the M31 ECs found by Huxor in 2005 and the very extended (r_eff > 80 pc), high-mass UCDs can be explained by merged cluster complexes in regions with low gravitational fields at large distances.
389 - Ryan Leaman 2012
Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity $bar{Z}$ and intrinsic spread in metallicity $sigma(Z)^{2}$. A plot of $sigma(Z)^{2}$ versus $bar{Z}$ shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model (e.g., Oey 2000), where the star cluster and dwarf galaxy behaviour in the $sigma(Z)^{2}-bar{Z}$ diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the enriched regions. The inhomogeneity of the self-enrichment sets the slope for the observed dwarf galaxy $sigma(Z)^{2}-bar{Z}$ correlation. The offset of the star cluster sequence from that of the dwarf galaxies is due to pre-enrichment, and the slope of the star cluster sequence represents the remnant signature of the self-enriched history of their host galaxies. The offset can be used to separate star clusters from dwarf galaxies without a priori knowledge of their luminosity or dynamical mass. The application of the inhomogeneous model to the $sigma(Z)^{2}-bar{Z}$ relationship provides a numerical formalism to connect the self-enrichment and pre-enrichment between star clusters and dwarf galaxies using physically motivated chemical enrichment parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا