ترغب بنشر مسار تعليمي؟ اضغط هنا

Faint Lyman-Break galaxies as a crucial test for galaxy formation models

68   0   0.0 ( 0 )
 نشر من قبل Barbara Lo Faro
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been shown that galaxy formation models within the LambdaCDM cosmology predict that, compared to the observed population, small galaxies (with stellar masses < 10^{11} M_sun) form too early, are too passive since z ~ 3 and host too old stellar populations at z=0. We then expect an overproduction of small galaxies at z > 4 that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the MORGANA galaxy formation model and GRASIL spectro-photometric + radiative transfer code to generate mock catalogues of deep fields observed with HST-ACS. We add observational noise and the effect of Lyman-alpha emission, and perform color-color selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i-dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of z_{850} ~ 27 V-dropouts at z ~ 5. We quantify the properties of these excess galaxies and discuss the implications: these galaxies are hosted in dark matter halos with circular velocities in excess of 100 km s^{-1}, and their suppression may require a deep re-thinking of stellar feedback processes taking place in galaxy formation.


قيم البحث

اقرأ أيضاً

We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z~4 Lyman-break galaxies (LBGs). LBGs are key tracers of the high-redshift star formation history and important sources of UV photons that ionized the inter galactic medium in the early universe. In order to better constrain the extinction and intrinsic star formation rate (SFR) of high-redshift LBGs, we combine the latest ultradeep Karl G. Jansky Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advance Camera for Surveys (ACS) optical images in the Great Observatories Origins Deep Survey-North. We select a large sample of 1771 z~4 LBGs from the ACS catalogue using $bband$-dropout color criteria. Our LBG samples have $iband$~25-28 (AB), ~0-3 magnitudes fainter than M*_UV at z~4. In our stacked radio images, we find the LBGs to be point-like under our 2 angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of $S_{1.5GHz}$=0.210+-0.075 uJy at ~3 sigma, first time on such a faint LBG population at z~4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an intrinsic SFR of 16.0+-5.7 M/yr, which is 2.8X the SFR derived from the rest-frame UV continuum luminosity. This factor of 2.8 is in excellent agreement with the extinction correction derived from the observed UV continuum spectral slope, using the local calibration of meurer99. This result supports the use of the local calibration on high-redshift LBGs for deriving the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.
The tight relation of star formation with molecular gas indicated by observations and assumed in recent models implies that the efficiency with which galaxies convert their gas into stars depends on gas metallicity. This is because the abundance of m olecular hydrogen is sensitive to the abundance of dust, which catalyzes the formation of H_2 and helps to shield it from dissociating radiation. In this study we point out that in the absence of significant pre-enrichment by Population III stars forming out of zero metallicity gas, such H_2-based star formation is expected to leave an imprint in the form of bi-modality in the metallicity distribution among dwarf galaxies and in the metallicity distribution of stars within individual galaxies. The bi-modality arises because when gas metallicity (and dust abundance) is low, formation of molecular gas is inefficient, the gas consumption time scale is long, and star formation and metal enrichment proceed slowly. When metallicity reaches a critical threshold value star formation and enrichment accelerate, which leads to rapid increase in both stellar mass and metallicity of galaxies. We demonstrate this process both using a simple analytical model and full cosmological simulations. In contrast, observed metallicity distributions of dwarf galaxies or stars within them are not bi-modal. We argue that this discrepancy points to substantial early stochastic pre-enrichment by population III stars to levels Z ~ 0.01 Z_sun in dense, star forming regions of early galaxies.
We present results from deep X-ray stacking of >4000 high redshift galaxies from z~1 to 8 using the 4 Ms Chandra Deep Field South (CDF-S) data, the deepest X-ray survey of the extragalactic sky to date. The galaxy samples were selected using the Lyma n break technique based primarily on recent HST ACS and WFC3 observations. Based on such high specific star formation rates (sSFRs): log SFR/M* > -8.7, we expect that the observed properties of these LBGs are dominated by young stellar populations. The X-ray emission in LBGs, eliminating individually detected X-ray sources (potential AGN), is expected to be powered by X-ray binaries and hot gas. We find, for the first time, evidence of evolution in the X-ray/SFR relation. Based on X-ray stacking analyses for z<4 LBGs (covering ~90% of the Universes history), we find that the 2-10 keV X-ray luminosity evolves weakly with redshift (z) and SFR as log LX = 0.93 log (1+z) + 0.65 log SFR + 39.80. By comparing our observations with sophisticated X-ray binary population synthesis models, we interpret that the redshift evolution of LX/SFR is driven by metallicity evolution in HMXBs, likely the dominant population in these high sSFR galaxies. We also compare these models with our observations of X-ray luminosity density (total 2-10 keV luminosity per Mpc^3) and find excellent agreement. While there are no significant stacked detections at z>5, we use our upper limits from 5<z<8 LBGs to constrain the SMBH accretion history of the Universe around the epoch of reionization.
Characterizing high-z quasar environments is key to understanding the co-evolution of quasars and the surrounding galaxies. To restrict their global picture, we statistically examine the g-dropout galaxy overdensity distribution around 570 faint quas ar candidates at z ~ 4, based on the Hyper Suprime-Cam Subaru Strategic Program survey. We compare the overdensity significances of g-dropout galaxies around the quasars with those around g-dropout galaxies, and find no significant difference between their distributions. A total of 4 (22) out of the 570 faint quasars, 0.7_{-0.4}^{+0.4} (3.9_{-0.8}^{+0.8}) %, are found to be associated with the > 4 sigma overdense regions within an angular separation of 1.8 (3.0) arcmin, which is the typical size of protoclusters at this epoch. This is similar to the fraction of g-dropout galaxies associated with the > 4 sigma overdense regions. This result is consistent with our previous work that 1.3_{-0.9}^{+0.9} % and 2.0_{-1.1}^{+1.1} % of luminous quasars detected in the Sloan Digital Sky Survey exist in the > 4 sigma overdense regions within 1.8 and 3.0 arcmin separations, respectively. Therefore, we suggest that the galaxy number densities around quasars are independent of their luminosity, and most quasars do not preferentially appear in the richest protocluster regions at z ~ 4. The lack of an apparent positive correlation between the quasars and the protoclusters implies that: i) the gas-rich major merger rate is relatively low in the protocluster regions, ii) most high-z quasars may appear through secular processes, or iii) some dust-obscured quasars exist in the protocluster regions.
193 - C.G. Lacey 2010
We make a detailed investigation of the properties of Lyman-break galaxies (LBGs) in the LambdaCDM model. We present predictions for two published variants of the GALFORM semi-analytical model: the Baugh et al. (2005) model, which has star formation at high redshifts dominated by merger-driven starbursts with a top-heavy IMF, and the Bower et al. (2006) model, which has AGN feedback and a standard Solar neighbourhood IMF throughout. We show predictions for the evolution of the rest-frame far-UV luminosity function in the redshift range z=3-20, and compare with the observed luminosity functions of LBGs at z=3-10. We find that the Baugh et al. model is in excellent agreement with these observations, while the Bower et al. model predicts too many high-luminosity LBGs. Dust extinction, which is predicted self-consistently based on galaxy gas contents, metallicities and sizes, is found to have a large effect on LBG luminosities. We compare predictions for the size evolution of LBGs at different luminosities with observational data for 2<z<7, and find the Baugh et al. model to be in good agreement. We present predictions for stellar, halo and gas masses, star formation rates, circular velocities, bulge-to-disk ratios, gas and stellar metallicities and clustering bias, as functions of far-UV luminosity and redshift. We find broad consistency with current observational constraints. We then present predictions for the abundance and angular sizes of LBGs out to very high redshift (z<20), finding that planned deep surveys with JWST should detect objects out to z<15. The typical UV luminosities of galaxies are predicted to be very low at high redshifts, which has implications for detecting the galaxies responsible for reionizing the IGM; for example, at z=10, 50% of the ionizing photons are expected to be produced by galaxies fainter than M_AB(1500A)-5logh ~ -15.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا