ترغب بنشر مسار تعليمي؟ اضغط هنا

The Primeval Populations of the Ultra-Faint Dwarf Galaxies

93   0   0.0 ( 0 )
 نشر من قبل Thomas M. Brown
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.

قيم البحث

اقرأ أيضاً

124 - Luis C. Vargas 2013
The Milky Way ultra-faint dwarf galaxies (UFDs) contain some of the oldest, most metal-poor stars in the Universe. We present [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], and mean [alpha/Fe], abundance ratios for 61 individual red giant branch stars across 8 UFDs. This is the largest sample of alpha abundances published to date in galaxies with absolute magnitudes M_V > -8, including the first measurements for Segue 1, Canes Venatici II, Ursa Major I, and Leo T. Abundances were determined via medium-resolution Keck/DEIMOS spectroscopy and spectral synthesis. The sample spans the metallicity range -3.4 < [Fe/H] < -1.1. With the possible exception of Segue 1 and Ursa Major II, the individual UFDs show on average lower [alpha/Fe] at higher metallicities, consistent with enrichment from Type Ia supernovae. Thus even the faintest galaxies have undergone at least a limited level of chemical self-enrichment. Together with recent photometric studies, this suggests that star formation in the UFDs was not a single burst, but instead lasted at least as much as the minimum time delay of the onset of Type Ia supernovae (~100 Myr) and less than ~2 Gyr. We further show that the combined population of UFDs has an [alpha/Fe] abundance pattern that is inconsistent with a flat, Galactic halo-like alpha abundance trend, and is also qualitatively different from that of the more luminous CVn I dSph, which does show a hint of a plateau at very low [Fe/H].
We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep HST/ACS imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M_V = -6.2, -5.5), metal-poo r (<[Fe/H]>= -2.4, -2.5) systems that have old stellar populations (> 11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52 - 0.77 Msun, the IMF is best fit by a power-law slope of alpha = 1.2^{+0.4}_{-0.5} for Hercules and alpha = 1.3 +/- 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter IMF (alpha=2.35) at the 5.8-sigma level, and a Kroupa IMF (alpha=2.3 above 0.5 Msun) at 5.4-sigma level. We simultaneously fit for the binary fraction, finding f_binary = 0.47^{+0.16}_{-0.14} for Hercules, and 0.47^{+0.37}_{-0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5 - 0.8 Msun, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.
We develop a technique to investigate the possibility that some of the recently discovered ultra-faint dwarf satellites of the Milky Way might be cusp caustics rather than gravitationally self-bound systems. Such cusps can form when a stream of stars folds, creating a region where the projected 2-D surface density is enhanced. In this work, we construct a Poisson maximum likelihood test to compare the cusp and exponential models of any substructure on an equal footing. We apply the test to the Hercules dwarf (d ~ 113 kpc, M_V ~ -6.2, e ~ 0.67). The flattened exponential model is strongly favored over the cusp model in the case of Hercules, ruling out at high confidence that Hercules is a cusp catastrophe. This test can be applied to any of the Milky Way dwarfs, and more generally to the entire stellar halo population, to search for the cusp catastrophes that might be expected in an accreted stellar halo.
Motivated by the stellar fossil record of Local Group (LG) dwarf galaxies, we show that the star-forming ancestors of the faintest ultra-faint dwarf galaxies (UFDs; ${rm M}_{rm V}$ $sim -2$ or ${rm M}_{star}$ $sim 10^{2}$ at $z=0$) had ultra-violet ( UV) luminosities of ${rm M}_{rm UV}$ $sim -3$ to $-6$ during reionization ($zsim6-10$). The existence of such faint galaxies has substantial implications for early epochs of galaxy formation and reionization. If the faint-end slopes of the UV luminosity functions (UVLFs) during reionization are steep ($alphalesssim-2$) to ${rm M}_{rm UV}$ $sim -3$, then: (i) the ancestors of UFDs produced $>50$% of UV flux from galaxies; (ii) galaxies can maintain reionization with escape fractions that are $>$2 times lower than currently-adopted values; (iii) direct HST and JWST observations may detect only $sim10-50$% of the UV light from galaxies; (iv) the cosmic star formation history increases by $gtrsim4-6$ at $zgtrsim6$. Significant flux from UFDs, and resultant tensions with LG dwarf galaxy counts, are reduced if the high-redshift UVLF turns over. Independent of the UVLF shape, the existence of a large population of UFDs requires a non-zero luminosity function to ${rm M}_{rm UV}$ $sim -3$ during reionization.
69 - Ian U. Roederer 2016
The heaviest metals found in stars in most ultra-faint dwarf (UFD) galaxies in the Milky Way halo are generally underabundant by an order of magnitude or more when compared with stars in the halo field. Among the heavy elements produced by n-capture reactions, only Sr and Ba can be detected in red giant stars in most UFD galaxies. This limited chemical information is unable to identify the nucleosynthesis process(es) responsible for producing the heavy elements in UFD galaxies. Similar [Sr/Ba] and [Ba/Fe] ratios are found in three bright halo field stars, BD-18 5550, CS 22185-007, and CS 22891-200. Previous studies of high-quality spectra of these stars report detections of additional n-capture elements, including Eu. The [Eu/Ba] ratios in these stars span +0.41 to +0.86. These ratios and others among elements in the rare earth domain indicate an r-process origin. These stars have some of the lowest levels of r-process enhancement known, with [Eu/H] spanning -3.95 to -3.32, and they may be considered nearby proxies for faint stars in UFD galaxies. Direct confirmation, however, must await future observations of additional heavy elements in stars in the UFD galaxies themselves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا