ﻻ يوجد ملخص باللغة العربية
Periodic forcing of nonlinear oscillators generates a rich and complex variety of behaviors, ranging from regular to chaotic behavior. In this work we seek to control, i.e., either suppress or generate, the chaotic behavior of a classical reference example in books or introductory articles, the Duffing oscillator. For this purpose, we propose an elegant strategy consisting of simply adjusting the shape of the time-dependent forcing. The efficiency of the proposed strategy is shown analytically, numerically and experimentally. In addition due to its simplicity and low cost such a work could easily be turned into an excellent teaching tool.
Chaos is generally considered a nuisance, inasmuch as it prevents long-term predictions in physical systems. Here, we present an easily accessible approach to undo deterministic chaos in arbitrary two-dimensional optical chaotic billiards, by introdu
Discrete fractional order chaotic systems extends the memory capability to capture the discrete nature of physical systems. In this research, the memristive discrete fractional order chaotic system is introduced. The dynamics of the system was studie
We study the quantum dissipative Duffing oscillator across a range of system sizes and environmental couplings under varying semiclassical approximations. Using spatial (based on Kullback-Leibler distances between phase-space attractors) and temporal
We study an opto-electronic time-delay oscillator that displays high-speed chaotic behavior with a flat, broad power spectrum. The chaotic state coexists with a linearly-stable fixed point, which, when subjected to a finite-amplitude perturbation, lo
We present an analytical calculation of the response of a driven Duffing oscillator to low-frequency fluctuations in the resonance frequency and damping. We find that fluctuations in these parameters manifest themselves distinctively, allowing them t