ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the source of phase noise: Response of a driven Duffing oscillator to low-frequency damping and resonance frequency fluctuations

108   0   0.0 ( 0 )
 نشر من قبل Colin Barquist
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analytical calculation of the response of a driven Duffing oscillator to low-frequency fluctuations in the resonance frequency and damping. We find that fluctuations in these parameters manifest themselves distinctively, allowing them to be distinguished. In the strongly nonlinear regime, amplitude and phase noise due to resonance frequency fluctuations and amplitude noise due to damping fluctuations are strongly attenuated, while the transduction of damping fluctuations into phase noise remains of order $1$. We show that this can be seen by comparing the relative strengths of the amplitude fluctuations to the fluctuations in the quadrature components, and suggest that this provides a means to determine the source of low-frequency noise in a driven Duffing oscillator.

قيم البحث

اقرأ أيضاً

Here we present a one-degree-of-freedom model of a nonlinear parametrically-driven resonator in the presence of a small added ac signal that has spectral responses similar to a frequency comb. The proposed nonlinear resonator has a spread spectrum re sponse with a series of narrow peaks that are equally spaced in frequency. The system displays this behavior most strongly after a symmetry-breaking bifurcation at the onset of parametric instability. We further show that the added ac signal can suppress the transition to parametric instability in the nonlinear oscillator. We also show that the averaging method is able to capture the essential dynamics involved.
Stochastic resonance (SR) is a coherence enhancement effect due to noise that occurs in periodically-driven nonlinear dynamical systems. A very broad range of physical and biological systems present this effect such as climate change, neurons, neural networks, lasers, SQUIDS, and tunnel diodes, among many others. Early theoretical models of SR dealt only with overdamped bistable oscillators. Here, we propose a simple model that accounts for SR in an underdamped driven Duffing oscillator with added white noise. Furthermore, we develop a theoretical method to predict the effect of white noise on the pump, signal, and idler responses of a Duffing amplifier. We also calculate the power spectral density of the response of the Duffing amplifier. This approach may prove to be useful for assessing the robustness of acoustic, phononic, or mechanical frequency-comb generation to the presence of noise.
Discrete fractional order chaotic systems extends the memory capability to capture the discrete nature of physical systems. In this research, the memristive discrete fractional order chaotic system is introduced. The dynamics of the system was studie d using bifurcation diagrams and phase space construction. The system was found chaotic with fractional order $0.465<n<0.562$. The dynamics of the system under different values makes it useful as a switch. Controllers were developed for the tracking control of the two systems to different trajectories. The effectiveness of the designed controllers were confirmed using simulations
The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if t he effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.
We describe the measurement of the secular motion of a levitated nanoparticle in a Paul trap with a CMOS camera. This simple method enables us to reach signal-to-noise ratios as good as 10$^{6}$ with a displacement sensitivity better than 10$^{-16},m ^{2}$/Hz. This method can be used to extract trap parameters as well as the properties of the levitated particles. We demonstrate continuous monitoring of the particle dynamics on timescales of the order of weeks. We show that by using the improvement given by super-resolution imaging, a significant reduction in the noise floor can be attained, with an increase in the bandwidth of the force sensitivity. This approach represents a competitive alternative to standard optical detection for a range of low frequency oscillators where low optical powers are required
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا