ﻻ يوجد ملخص باللغة العربية
We study the quantum dissipative Duffing oscillator across a range of system sizes and environmental couplings under varying semiclassical approximations. Using spatial (based on Kullback-Leibler distances between phase-space attractors) and temporal (Lyapunov exponent-based) complexity metrics, we isolate the effect of the environment on quantum-classical differences. Moreover, we quantify the system sizes where quantum dynamics cannot be simulated using semiclassical or noise-added classical approximations. Remarkably, we find that a parametrically invariant meta-attractor emerges at a specific length scale and noise-added classical models deviate strongly from quantum dynamics below this scale. Our findings also generalize the previous surprising result that classically regular orbits can have the greatest quantum-classical differences in the semiclassical regime. In particular, we show that the dynamical growth of quantum-classical differences is not determined by the degree of classical chaos.
Periodic forcing of nonlinear oscillators generates a rich and complex variety of behaviors, ranging from regular to chaotic behavior. In this work we seek to control, i.e., either suppress or generate, the chaotic behavior of a classical reference e
The continuous monitoring of a quantum system strongly influences the emergence of chaotic dynamics near the transition from the quantum regime to the classical regime. Here we present a feedback control scheme that uses adaptive measurement techniqu
We treat the double well quantum oscillator from the standpoint of the Ehrenfest equation but in a manner different from Pattanayak and Schieve. We show that for short times there can be chaotic motion due to quantum fluctuations, but over sufficiently long times the behaviour is normal.
Quantum spin liquids have been at the forefront of correlated electron research ever since their original proposal in 1973, and the realization that they belong to the broader class of intrinsic topological orders, along with the fractional quantum H
The interaction among the components of a hybrid quantum system is often neglected when considering the coupling of these components to an environment. However, if the interaction strength is large, this approximation leads to unphysical predictions,