ﻻ يوجد ملخص باللغة العربية
Chaos is generally considered a nuisance, inasmuch as it prevents long-term predictions in physical systems. Here, we present an easily accessible approach to undo deterministic chaos in arbitrary two-dimensional optical chaotic billiards, by introducing spatially varying refractive index therein. The landscape of refractive index is obtained by a conformal transformation from an integrable billiard. Our study shows that this approach is robust to small fluctuations. We show further that trajectory rectification can be realized by relating chaotic billiards with non-Euclidean billiards. Finally, we illustrate the universality of this approach by extending our investigations to arbitrarily deformed optical billiards. This work not only contributes in controlling chaos, but provides a novel pathway to the design of billiards and microcavities with desired properties and functionalities.
Periodic forcing of nonlinear oscillators generates a rich and complex variety of behaviors, ranging from regular to chaotic behavior. In this work we seek to control, i.e., either suppress or generate, the chaotic behavior of a classical reference e
The texture of phase space and bifurcation diagrams of two-dimensional discrete maps describing a lattice of interacting oscillators, confined in on-site potentials with deformable double-well shapes, are examined. The two double-well potentials cons
We study and characterize a direct route to high-dimensional chaos (i.e. not implying an intermediate low-dimensional attractor) of a system composed out of three coupled Lorenz oscillators. A geometric analysis of this medium-dimensional dynamical s
The development of solid-state photonic quantum technologies is of great interest for fundamental studies of light-matter interactions and quantum information science. Diamond has turned out to be an attractive material for integrated quantum informa
We uncover a route from low-dimensional to high-dimensional chaos in nonsmooth dynamical systems as a bifurcation parameter is continuously varied. The striking feature is the existence of a finite parameter interval of periodic attractors in between