ﻻ يوجد ملخص باللغة العربية
Consider a minimal free topological dynamical system $(X, T, mathbb{Z}^d)$. It is shown that the comparison radius of the crossed product C*-algebra $mathrm{C}(X) rtimes mathbb{Z}^d$ is at most the half of the mean topological dimension of $(X, T, mathbb{Z}^d)$. As a consequence, the C*-algebra $mathrm{C}(X) rtimes mathbb{Z}^d$ is classifiable if $(X, T, mathbb{Z}^d)$ has zero mean dimension.
Let $(X, Gamma)$ be a free minimal dynamical system, where $X$ is a compact separable Hausdorff space and $Gamma$ is a discrete amenable group. It is shown that, if $(X, Gamma)$ has a version of Rokhlin property (uniform Rokhlin property) and if $mat
Consider an arbitrary extension of a free $mathbb Z^d$-action on the Cantor set. It is shown that it has dynamical asymptotic dimension at most $3^d - 1$.
We study directional mean dimension of $mathbb{Z}^k$-actions (where $k$ is a positive integer). On the one hand, we show that there is a $mathbb{Z}^2$-action whose directional mean dimension (considered as a $[0,+infty]$-valued function on the torus)
We refine two results in the paper entitled ``Sofic mean dimension by Hanfeng Li, improving two inequalities with two equalities, respectively, for sofic mean dimension of typical actions. On the one hand, we study sofic mean dimension of full shifts
In this paper, we establish a connection between Rokhlin dimension and the absorption of certain model actions on strongly self-absorbing C*-algebras. Namely, as to be made precise in the paper, let $G$ be a well-behaved locally compact group. If $ma