ترغب بنشر مسار تعليمي؟ اضغط هنا

The $beta$-Delaunay tessellation IV: Mixing properties and central limit theorems

84   0   0.0 ( 0 )
 نشر من قبل Christoph Thaele
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Various mixing properties of $beta$-, $beta$- and Gaussian Delaunay tessellations in $mathbb{R}^{d-1}$ are studied. It is shown that these tessellation models are absolutely regular, or $beta$-mixing. In the $beta$- and the Gaussian case exponential bounds for the absolute regularity coefficients are found. In the $beta$-case these coefficients show a polynomial decay only. In the background are new and strong concentration bounds on the radius of stabilization of the underlying construction. Using a general device for absolutely regular stationary random tessellations, central limit theorems for a number of geometric parameters of $beta$- and Gaussian Delaunay tessellations are established. This includes the number of $k$-dimensional faces and the $k$-volume of the $k$-sk



قيم البحث

اقرأ أيضاً

89 - Randolf Altmeyer 2019
The approximation of integral type functionals is studied for discrete observations of a continuous It^o semimartingale. Based on novel approximations in the Fourier domain, central limit theorems are proved for $L^2$-Sobolev functions with fractiona l smoothness. An explicit $L^2$-lower bound shows that already lower order quadrature rules, such as the trapezoidal rule and the classical Riemann estimator, are rate optimal, but only the trapezoidal rule is efficient, achieving the minimal asymptotic variance.
127 - Xiao Fang , Yuta Koike 2020
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a su m of $n$ locally dependent random vectors. We assume the approximating normal distribution has a non-singular covariance matrix. The error bounds vanish even when the dimension $d$ is much larger than the sample size $n$. We prove our main results using the approach of Gotze (1991) in Steins method, together with modifications of an estimate of Anderson, Hall and Titterington (1998) and a smoothing inequality of Bhattacharya and Rao (1976). For sums of $n$ independent and identically distributed isotropic random vectors having a log-concave density, we obtain an error bound that is optimal up to a $log n$ factor. We also discuss an application to multiple Wiener-It^{o} integrals.
171 - Patrizia Berti 2009
An urn contains balls of d colors. At each time, a ball is drawn and then replaced together with a random number of balls of the same color. Assuming that some colors are dominated by others, we prove central limit theorems. Some statistical applications are discussed.
In this paper, we study the asymptotic behavior of a supercritical $(xi,psi)$-superprocess $(X_t)_{tgeq 0}$ whose underlying spatial motion $xi$ is an Ornstein-Uhlenbeck process on $mathbb R^d$ with generator $L = frac{1}{2}sigma^2Delta - b x cdot a bla$ where $sigma, b >0$; and whose branching mechanism $psi$ satisfies Greys condition and some perturbation condition which guarantees that, when $zto 0$, $psi(z)=-alpha z + eta z^{1+beta} (1+o(1))$ with $alpha > 0$, $eta>0$ and $betain (0, 1)$. Some law of large numbers and $(1+beta)$-stable central limit theorems are established for $(X_t(f) )_{tgeq 0}$, where the function $f$ is assumed to be of polynomial growth. A phase transition arises for the central limit theorems in the sense that the forms of the central limit theorem are different in three different regimes corresponding the branching rate being relatively small, large or critical at a balanced value.
162 - Irene Crimaldi 2015
We consider a variant of the randomly reinforced urn where more balls can be simultaneously drawn out and balls of different colors can be simultaneously added. More precisely, at each time-step, the conditional distribution of the number of extracte d balls of a certain color given the past is assumed to be hypergeometric. We prove some central limit theorems in the sense of stable convergence and of almost sure conditional convergence, which are stronger than convergence in distribution. The proven results provide asymptotic confidence intervals for the limit proportion, whose distribution is generally unknown. Moreover, we also consider the case of more urns subjected to some random common factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا