ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic quantum tunneling in nanoelectromechanical systems

273   0   0.0 ( 0 )
 نشر من قبل Mika Sillanpaa
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The experimental observation of quantum phenomena in mechanical degrees of freedom is difficult, as the systems become linear towards low energies and the quantum limit, and thus reside in the correspondence limit. Here we investigate how to access quantum phenomena in flexural nanomechanical systems which are strongly deflected by a voltage. Near a metastable point, one can achieve a significant nonlinearity in the electromechanical potential at the scale of zero point energy. The system could then escape from the metastable state via macroscopic quantum tunneling (MQT). We consider two model systems suspended atop a voltage gate, namely, a graphene sheet, and a carbon nanotube. We find that the experimental demonstration of the phenomenon is currently possible but demanding, since the MQT crossover temperatures fall in the milli-Kelvin range. A carbon nanotube is suggested as the most promising system.



قيم البحث

اقرأ أيضاً

A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein condensates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.
The effects of a turnstile operation on the current-induced vibron dynamics in nanoelectromechanical systems (NEMS) are analyzed in the framework of the generalized master equation. In our simulations each turnstile cycle allows the pumping of up to two interacting electrons across a biased mesoscopic subsystem which is electrostatically coupled to the vibrational mode of a nanoresonator. The time-dependent mean vibron number is very sensitive to the turnstile driving, rapidly increasing/decreasing along the charging/discharging sequences. This sequence of heating and cooling cycles experienced by the nanoresonator is due to specific vibron-assisted sequential tunneling processes along a turnstile period. At the end of each charging/discharging cycle the nanoresonator is described by a linear combination of vibron-dressed states $s_{ u}$ associated to an electronic configuration $ u$. If the turnstile operation leads to complete electronic depletion the nanoresonator returns to its equilibrium position, i.e.,its displacement vanishes. It turns out that a suitable bias applied on the NEMS leads to a slow but complete cooling at the end of the turnstile cycle. Our calculations show that the quantum turnstile regime switches the dynamics of the NEMS between vibron-dressed subspaces with different electronic occupation numbers. We predict that the turnstile control of the electron-vibron interaction induces measurable changes on the input and output transient currents.
Superposition states of circular currents of exciton-polaritons mimic the superconducting flux qubits. The phase of a polariton fluid must change by an integer number of $2pi$, when going around the ring. If one introduces a ${pi}$-phase delay line i n the ring, the fluid is obliged to propagate a clockwise or anticlockwise circular current to reduce the total phase gained over one round-trip to zero or to build it up to $2pi$. We show that such a $pi$-delay line can be provided by a dark soliton pinned to a potential well created by a C-shape non-resonant pump-spot. The resulting split-ring polariton condensates exhibit pronounced coherent oscillations passing periodically through clockwise and anticlockwise current states. These oscillations may persist far beyond the coherence time of polariton condensates. The qubits based on split-ring polariton condensates are expected to possess very high figures of merit that makes them a valuable alternative to superconducting qubits. The use of the dipole-polarized polaritons allows to control coherently the state of the qubit with the external electric field. This is shown to be one of the tools for realization of single-qubit logic operations. We propose the design of an $i$SWAP gate based on a pair of coupled polariton qubits. To demonstrate the capacity of the polariton platform for quantum computations, we propose a protocol for the realization of the Deutschs algorithm with polariton qubit networks.
Thermodynamic measurements of magnetic fluxes and I-V characteristics in SQUIDs offer promising paths to the characterization of topological superconducting phases. We consider the problem of macroscopic quantum tunneling in an rf-SQUID in a topologi cal superconducting phase. We show that the topological order shifts the tunneling rates and quantum levels, both in the parity conserving and fluctuating cases. The latter case is argued to actually enhance the signatures in the slowly fluctuating limit, which is expected to take place in the quantum regime of the circuit. In view of recent advances, we also discuss how our results affect a $pi$-junction loop.
We demonstrate the effect of single-electron tunneling (SET) through a carbon nanotube quantum dot on its nanomechanical motion. We find that the frequency response and the dissipation of the nanoelectromechanical system (NEMS) to SET strongly depend s on the electronic environment of the quantum dot, in particular on the total dot capacitance and the tunnel coupling to the metal contacts. Our findings suggest that one could achieve quality factors of 10$^{6}$ or higher by choosing appropriate gate dielectrics and/or by improving the tunnel coupling to the leads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا