ﻻ يوجد ملخص باللغة العربية
A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein condensates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.
We present a new theoretical treatment of macroscopic quantum self-trapping (MQST) and quantum coherent atomic tunneling in a zero-temperature two-species Bose-Einstein condensate system in the presence of the nonlinear self-interaction of each speci
Tunneling of a quasibound state is a non-smooth process in the entangled many-body case. Using time-evolving block decimation, we show that repulsive (attractive) interactions speed up (slow down) tunneling, which occurs in bursts. While the escape t
An instanton method is proposed to investigate the quantum tunneling between two weakly-linked Bose-Einstein condensates confined in double-well potential traps. We point out some intrinsic pathologies in the earlier treatments of other authors and m
Superposition states of circular currents of exciton-polaritons mimic the superconducting flux qubits. The phase of a polariton fluid must change by an integer number of $2pi$, when going around the ring. If one introduces a ${pi}$-phase delay line i
The experimental observation of quantum phenomena in mechanical degrees of freedom is difficult, as the systems become linear towards low energies and the quantum limit, and thus reside in the correspondence limit. Here we investigate how to access q