ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics and Dissipation induced by Single-Electron Tunneling in Carbon Nanotube Nanoelectromechanical Systems

71   0   0.0 ( 0 )
 نشر من قبل Marc Ganzhorn
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the effect of single-electron tunneling (SET) through a carbon nanotube quantum dot on its nanomechanical motion. We find that the frequency response and the dissipation of the nanoelectromechanical system (NEMS) to SET strongly depends on the electronic environment of the quantum dot, in particular on the total dot capacitance and the tunnel coupling to the metal contacts. Our findings suggest that one could achieve quality factors of 10$^{6}$ or higher by choosing appropriate gate dielectrics and/or by improving the tunnel coupling to the leads.

قيم البحث

اقرأ أيضاً

The experimental observation of quantum phenomena in mechanical degrees of freedom is difficult, as the systems become linear towards low energies and the quantum limit, and thus reside in the correspondence limit. Here we investigate how to access q uantum phenomena in flexural nanomechanical systems which are strongly deflected by a voltage. Near a metastable point, one can achieve a significant nonlinearity in the electromechanical potential at the scale of zero point energy. The system could then escape from the metastable state via macroscopic quantum tunneling (MQT). We consider two model systems suspended atop a voltage gate, namely, a graphene sheet, and a carbon nanotube. We find that the experimental demonstration of the phenomenon is currently possible but demanding, since the MQT crossover temperatures fall in the milli-Kelvin range. A carbon nanotube is suggested as the most promising system.
71 - G. Gotz , G.A. Steele , W. Vos 2008
We investigate a Quantum Dot (QD) in a Carbon Nanotube (CNT) in the regime where the QD is nearly isolated from the leads. An aluminum single electron transistor (SET) serves as a charge detector for the QD. We precisely measure and tune the tunnel r ates into the QD in the range between 1 kHz and 1 Hz, using both pulse spectroscopy and real - time charge detection and measure the excitation spectrum of the isolated QD.
We theoretically study the interplay between electrical and mechanical properties of suspended, doubly clamped carbon nanotubes in which charging effects dominate. In this geometry, the capacitance between the nanotube and the gate(s) depends on the distance between them. This dependence modifies the usual Coulomb models and we show that it needs to be incorporated to capture the physics of the problem correctly. We find that the tube position changes in discrete steps every time an electron tunnels onto it. Edges of Coulomb diamonds acquire a (small) curvature. We also show that bistability in the tube position occurs and that tunneling of an electron onto the tube drastically modifies the quantized eigenmodes of the tube. Experimental verification of these predictions is possible in suspended tubes of sub-micron length.
We have studied electron transport in clean single-walled carbon nanotube quantum dots. Because of the large number of Coulomb blockade diamonds simultaneously showing both shell structure and Kondo effect, we are able to perform a detailed analysis of tunneling renormalization effects. Thus determining the environment induced level shifts of this artificial atom. In shells where only one of the two orbitals is coupled strongly, we observe a marked asymmetric gate-dependence of the inelastic cotunneling lines together with a systematic gate dependence of the size (and shape) of the Coulomb diamonds. These effects are all given a simple explanation in terms of second-order perturbation theory in the tunnel coupling.
We investigate instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dot attached to a vibrating cantilever via asymmetric tunnel contact. The Kondo resonance in elect ron tunneling between source and shuttle facilitates self-sustained oscillations originated from strong coupling of mechanical and electronic/spin degrees of freedom. We analyze stability diagram for two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle and find that the saturation amplitude of oscillation is associated with the retardation effect of Kondo-cloud. The results shed light on possible ways of experimental realization of dynamical probe for the Kondo-cloud by using high tunability of mechanical dissipation as well as supersensitive detection of mechanical displacement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا