ﻻ يوجد ملخص باللغة العربية
This paper describes the algorithms, features and implementation of PyDEC, a Python library for computations related to the discretization of exterior calculus. PyDEC facilitates inquiry into both physical problems on manifolds as well as purely topological problems on abstract complexes. We describe efficient algorithms for constructing the operators and objects that arise in discrete exterior calculus, lowest order finite element exterior calculus and in related topological problems. Our algorithms are formulated in terms of high-level matrix operations which extend to arbitrary dimension. As a result, our implementations map well to the facilities of numerical libraries such as NumPy and SciPy. The availability of such libraries makes Python suitable for prototyping numerical methods. We demonstrate how PyDEC is used to solve physical and topological problems through several concise examples.
There are very few results on mixed finite element methods on surfaces. A theory for the study of such methods was given recently by Holst and Stern, using a variational crimes framework in the context of finite element exterior calculus. However, we
A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a co
Exterior calculus with its three operations meet, join and hodge star complement, is used for the representation of fermion-hole systems and for fermionic analogues of logical gates. Two different schemes that implement fermionic quantum computation,
We present a parallel algorithm for computing the approximate factorization of an $N$-by-$N$ kernel matrix. Once this factorization has been constructed (with $N log^2 N $ work), we can solve linear systems with this matrix with $N log N $ work. Kern
Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design(CAD). In this paper, an improved isogeometric analysis(IGA) method for trimmed geometries is proposed. We will show that the proposed method reduces the nu