ﻻ يوجد ملخص باللغة العربية
Trimming techniques are efficient ways to generate complex geometries in Computer-Aided Design(CAD). In this paper, an improved isogeometric analysis(IGA) method for trimmed geometries is proposed. We will show that the proposed method reduces the numerical error of physical solution by 50% for simple trimmed geometries, and the condition number of stiffness matrix is also decreased. Furthermore, the number of integration elements and integration points involved in the solving process can be significantly reduced compared to previous approaches, drastically improving the computational efficiency for IGA problems on the trimmed geometry. Several examples are illustrated to show the effectiveness of the proposed approach.
In this work we propose a nonlinear stabilization technique for convection-diffusion-reaction and pure transport problems discretized with space-time isogeometric analysis. The stabilization is based on a graph-theoretic artificial diffusion operator
Volumetric spline parameterization and computational efficiency are two main challenges in isogeometric analysis (IGA). To tackle this problem, we propose a framework of computation reuse in IGA on a set of three-dimensional models with similar seman
This paper describes the algorithms, features and implementation of PyDEC, a Python library for computations related to the discretization of exterior calculus. PyDEC facilitates inquiry into both physical problems on manifolds as well as purely topo
There are very few results on mixed finite element methods on surfaces. A theory for the study of such methods was given recently by Holst and Stern, using a variational crimes framework in the context of finite element exterior calculus. However, we
This work is motivated by the difficulty in assembling the Galerkin matrix when solving Partial Differential Equations (PDEs) with Isogeometric Analysis (IGA) using B-splines of moderate-to-high polynomial degree. To mitigate this problem, we propose