ﻻ يوجد ملخص باللغة العربية
Exterior calculus with its three operations meet, join and hodge star complement, is used for the representation of fermion-hole systems and for fermionic analogues of logical gates. Two different schemes that implement fermionic quantum computation, are proposed. The first scheme compares fermionic gates with Boolean gates, and leads to novel electronic devices that simulate fermionic gates. The second scheme usesa well known map between fermionic and multi-qubit systems, to simulate fermionic gates within multi-qubit systems.
We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi [Phys. Rev. A 73, 042313 (2006)] that under the assumption of pe
We introduce two extensions of the $lambda$-calculus with a probabilistic choice operator, $Lambda_oplus^{cbv}$ and $Lambda_oplus^{cbn}$, modeling respectively call-by-value and call-by-name probabilistic computation. We prove that both enjoys conflu
This paper describes the algorithms, features and implementation of PyDEC, a Python library for computations related to the discretization of exterior calculus. PyDEC facilitates inquiry into both physical problems on manifolds as well as purely topo
The fermionic quantum emulator (FQE) is a collection of protocols for emulating quantum dynamics of fermions efficiently taking advantage of common symmetries present in chemical, materials, and condensed-matter systems. The library is fully integrat
Experimental groups are now fabricating quantum processors powerful enough to execute small instances of quantum algorithms and definitively demonstrate quantum error correction that extends the lifetime of quantum data, adding urgency to architectur