ترغب بنشر مسار تعليمي؟ اضغط هنا

Nitrogen Contamination in Elastic Neutron Scattering

139   0   0.0 ( 0 )
 نشر من قبل Songxue Chi
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nitrogen gas accidentally sealed in a sample container produces various spurious effects in elastic neutron scattering measurements. These effects are systematically investigated and the details of the spurious scattering are presented.



قيم البحث

اقرأ أيضاً

The Kohn variational principle and the hyperspherical harmonics technique are applied to study n-3H elastic scattering at low energies. In this contribution the first results obtained using a non-local realistic interaction derived from the chiral pe rturbation theory are reported. They are found to be in good agreement with those obtained solving the Faddeev-Yakubovsky equations. The calculated total and differential cross sections are compared with the available experimental data. The effect of including a three-nucleon interaction is also discussed.
In this study, in situ quasi-elastic neutron scattering (QENS) has been employed to probe the water dynamics and reaction mechanisms occurring during the formation of NaOH- and Na2SiO3-activated slags, an important class of low-CO2 cements, in conjun ction with isothermal conduction calorimetry (ICC), Fourier transform infrared spectroscopy (FTIR) analysis and N2 sorption measurements. We show that the single ICC reaction peak in the NaOH-activated slag is accompanied with a transformation of free water to bound water (from QENS analysis), which directly signals formation of a sodium-containing aluminum-substituted calcium-silicate-hydrate (C-(N)-A-S-H) gel, as confirmed by FTIR. In contrast, the Na2SiO3-activated slag sample exhibits two distinct reaction peaks in the ICC data, where the first reaction peak is associated with conversion of constrained water to bound and free water, and the second peak is accompanied with conversion of free water to bound and constrained water (from QENS analysis). The second conversion is attributed to formation of the main reaction product (i.e., C-(N)-A-S-H gel) as confirmed by FTIR and N2 sorption data. Analysis of the QENS, FTIR and N2 sorption data together with thermodynamic information from the literature explicitly shows that the first reaction peak is associated with the formation of an initial gel (similar to C-(N)-A-S-H gel) that is governed by the Na+ ions and silicate species in Na2SiO3 solution and the dissolved Ca/Al species from slag. Hence, this study exemplifies the power of in situ QENS, when combined with laboratory-based characterization techniques, in elucidating the water dynamics and associated chemical mechanisms occurring in complex materials, and has provided important mechanistic insight on the early-age reactions occurring during formation of two alkali-activated slags.
A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. Purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from about 10^-1 ppm up to about 10^3 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (gamma-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. The rate constant of the light quenching process induced by Nitrogen in liquid Ar has been found to be k(N2)=0.11 micros^-1 ppm^-1. Direct PMT signals acquisition at high time resolution by fast Waveform recording allowed to extract with high precision the main characteristics of the scintillation light emission in pure and contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable from O(1 ppm) of Nitrogen concentrations.
118 - S. Wakimoto , K. Yamada , S. Ueki 1999
Recent neutron-scattering experiments on La(2-x)Sr(x)CuO4 single crystals by Wakimoto et al. have revealed that elastic magnetic peaks appear at low temperatures in both insulating (x=0.02-0.05) and superconducting (x=0.06) samples. We have carried o ut further investigations particularly on the elastic incommensurate peaks for x=0.06, and found that the integrated intensity drastically changes across the low temperature insulator- superconductor boundary; the intensity of x=0.06 is 4 times smaller than that of x=0.05, while the intensity in the insulating region stays constant.
Spin waves in the the rare earth orthorferrite YFeO$_3$ have been studied by inelastic neutron scattering and analyzed with a full four-sublattice model including contributions from both the weak ferromagnetic and hidden antiferromagnetic orders. Ant iferromagnetic (AFM) exchange interactions of $J_1 = -4.23 pm 0.08$ (nearest-neighbors only) or $J_1 = -4.77 pm 0.08$ meV and $J_2 = -0.21 pm 0.04$ meV lead to excellent fits for most branches at both low and high energies. An additional branch associated with the hidden antiferromagnetic order was observed. This work paves the way for studies of other materials in this class containing spin reorientation transitions and magnetic rare earth ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا