ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Scattering Study of Elastic Magnetic Signals in Superconducting La1.94Sr0.06Cu4

119   0   0.0 ( 0 )
 نشر من قبل Shuichi Wakimoto
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent neutron-scattering experiments on La(2-x)Sr(x)CuO4 single crystals by Wakimoto et al. have revealed that elastic magnetic peaks appear at low temperatures in both insulating (x=0.02-0.05) and superconducting (x=0.06) samples. We have carried out further investigations particularly on the elastic incommensurate peaks for x=0.06, and found that the integrated intensity drastically changes across the low temperature insulator- superconductor boundary; the intensity of x=0.06 is 4 times smaller than that of x=0.05, while the intensity in the insulating region stays constant.

قيم البحث

اقرأ أيضاً

We present studies of the magnetic field distribution around the vortices in LuNi2B2C. Small-angle neutron scattering measurements of the vortex lattice (VL) in this material were extended to unprecedentedly large values of the scattering vector q, o btained both by using high magnetic fields to decrease the VL spacing and by using higher order reflections. A square VL, oriented with the nearest neighbor direction along the crystalline [110] direction, was observed up to the highest measured field. The first-order VL form factor, |F(q10)|, was found to decrease exponentially with increasing magnetic field. Measurements of the higher order form factors, |F(qhk)|, reveal a significant in-plane anisotropy and also allow for a real-space reconstruction of the VL field distribution.
64 - Songxue Chi , Feng Ye , Wei Bao 2013
We observed in superconducting (Tl,Rb)2Fe4Se5 spin-wave branches that span an energy range from 6.5 to 209 meV. Spin dynamics are successfully described by a Heisenberg localized spin model whose dominant in-plane interactions include only the neares t (J1 and J1) and next nearest neighbor (J2 and J2) exchange terms within and between the tetramer spin blocks, respectively. These experimentally determined exchange constants would crucially constrain the theoretical viewpoints on magnetism and superconductivity in the Fe-based materials.
We present the results of a neutron scattering study of the high energy phonons in the superconducting graphite intercalation compound CaC$_6$. The study was designed to address hitherto unexplored aspects of the lattice dynamics in CaC$_6$, and in p articular any renormalization of the out-of-plane and in-plane graphitic phonon modes. We present a detailed comparison between the data and the results of density functional theory (DFT). A description is given of the analysis methods developed to account for the highly-textured nature of the samples. The DFT calculations are shown to provide a good description of the general features of the experimental data. This is significant in light of a number of striking disagreements in the literature between other experiments and DFT on CaC$_6$. The results presented here demonstrate that the disagreements are not due to any large inaccuracies in the calculated phonon frequencies.
The relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La$_{1.93}$Sr$_{0.07}$CuO$_4$, a superconductor with a transi tion temperature of $T_c = 20$~K. At $Tll T_c$, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below $sim10$~K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO$_6$ octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO$_2$ planes. Furthermore, we observed a weak elastic $(3bar{3}0)$ superlattice peak that implies a reduced lattice symmetry. The presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped lsco. The coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.
We use polarized inelastic neutron scattering to study low-energy spin excitations and their spatial anisotropy in electron-overdoped superconducting BaFe$_{1.85}$Ni$_{0.15}$As$_{2}$ ($T_c=14$ K). In the normal state, the imaginary part of the dynami c susceptibility, $chi^{primeprime}(Q,omega)$, at the antiferromagnetic (AF) wave vector $Q=(0.5,0.5,1)$ increases linearly with energy for $Ele 13$ meV. Upon entering the superconducting state, a spin gap opens below $Eapprox 3$ meV and a broad neutron spin resonance appears at $Eapprox 7$ meV. Our careful neutron polarization analysis reveals that $chi^{primeprime}(Q,omega)$ is isotropic for the in-plane and out-of-plane components in both the normal and superconducting states. A comparison of these results with those of undoped BaFe$_2$As$_2$ and optimally electron-doped BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ ($T_c=20$ K) suggests that the spin anisotropy observed in BaFe$_{1.9}$Ni$_{0.1}$As$_{2}$ is likely due to its proximity to the undoped BaFe$_2$As$_2$. Therefore, the neutron spin resonance is isotropic in the overdoped regime, consistent with a singlet to triplet excitation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا