ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Evidence for Edge-Contaminated Vortex Phase in a Nb Single Crystal using Neutron Diffraction

69   0   0.0 ( 0 )
 نشر من قبل Helen Hanson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first direct observation of a disordered vortex matter phase existing near the edge of a bulk type-II superconductor Nb using a novel position-sensitive neutron diffraction technique. This edge-contaminated vortex state was implicated in previous studies using transport techniques and was postulated to have played a significant role in the behavior of vortex dynamics in a wide range of type-II superconductors. It is found that upon thermal annealing, the vortex matter in the bulk undergoes re-ordering, suggesting that the edge-contaminated bulk vortex state is metastable. The edge vortex state remains disordered after repeated thermal annealing, indicating spatial coexistence of a vortex glass with a Bragg glass. This observation resolves many outstanding issues concerning the peak effect in type-II superconductors.

قيم البحث

اقرأ أيضاً

102 - V. Hutanu , H. Deng , S. Ran 2019
The crystal structure of the new superconductor UTe2 has been investigated for the first time at low temperature (LT) of 2.7 K, just closely above the superconducting transition temperature of about 1.7 K by single crystal neutron diffraction, in ord er to prove, whether the orthorhombic structure of type Immm (Nr. 71 Int. Tabl.) reported for room temperature (RT) persists down to the superconducting phase and can be considered as a parent symmetry for the development of spin triplet superconductivity. Our results show that the RT structure reported previously obtained by single crystal X-Ray diffraction indeed describes also the LT neutron diffraction data with high precision. No structural change from RT down to 2.7 K is observed. Detailed structural parameters for UTe2 at LT are reported.
238 - Y. Su , P. Link , A. Schneidewind 2008
Neutron diffraction experiments have been carried out on a Sn-flux grown BaFe2As2 single crystal, the parent compound of the A-122 family of FeAs-based high-Tc superconductors. A tetragonal to orthorhombic structural phase transition and a three dime nsional long-range antiferromagnetic ordering of the iron moment, with a unique magnetic propagation wavevector k = (1, 0, 1), have been found to take place at ~90 K. The magnetic moments of iron are aligned along the long a axis in the low temperature orthorhombic phase (Fmmm with b<a<c). Our results thus demonstrate that the magnetic structure of BaFe2As2 single crystal is the same as those in other A-122 iron pnictides compounds. We argue that the tin incorporation in the lattice is responsible for a smaller orthorhombic splitting and lower Neel temperature T_N observed in the experiment.
We report the first observation of a striking history dependence of the structure function of the vortex matter in the peak effect regime in a Nb single crystal by using small angle neutron scattering combined with {it in situ} magnetic susceptibilit y measurements. Metastable phases of vortex matter, supercooled vortex liquid and superheated vortex solid, have been identified. We interpret our results as direct structural evidence for a first-order solid-liquid transition at the peak effect.
Through analysis of single crystal neutron diffraction data, we present the magnetic structures of magnetoelectric Co4Nb2O9 under various magnetic fields. In zero-field, neutron diffraction experiments below TN=27 K reveal that the Co2+ moments order primarily along the a* direction without any spin canting along the c axis, manifested by the magnetic symmetry C2/c. The moments of nearest neighbor Co atoms order ferromagnetically with a small cant away from the next nearest neighbor Co moments along the c axis. In the applied magnetic field H//a, three magnetic domains were aligned with their major magnetic moments perpendicular to the magnetic field with no indication of magnetic phase transitions. The influences of magnetic fields on the magnetic structures associated with the observed magnetoelectric coupling are discussed.
149 - W. T. Jin , M. Meven , H. Deng 2019
The magnetic structure of the nonmetallic metal FeCrAs, a compound with the characters of both metals and insulators, was examined as a function of temperature using single-crystal neutron diffraction. The magnetic propagation vector was found to be $mathit{k}$ = (1/3, 1/3, 0), and the magnetic reflections disppeared above $mathit{T_{N}}$ = 116(1) K. In the ground state, the Cr sublattice shows an in-plane spiral antiferromagnetic order. The moment sizes of the Cr ions were found to be small, due to strong magnetic frustration in the distorted Kagome lattice or the itinerant nature of the Cr magnetism, and vary between 0.8 and 1.4 $mu_{B}$ on different sites as expected for a spin-density-wave (SDW) type order. The upper limit of the moment on the Fe sublattice is estimated to be less than 0.1 $mu_{B}$. With increasing temperature up to 95 K, the Cr moments cant out of the $mathit{ab}$ plane gradually, with the in-plane components being suppressed and the out-of-plane components increasing in contrast. This spin-reorientation of Cr moments can explain the dip in the $mathit{c}$-direction magnetic susceptibility and the kink in the magnetic order parameter at $mathit{T_{O}}$ ~ 100 K, a second magnetic transition which was unexplained before. We have also discussed the similarity between FeCrAs and the model itinerant magnet Cr, which exhibits spin-flip transitions and SDW-type antiferromagnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا