ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron diffraction on antiferromagnetic ordering in single-crystal BaFe2As2

330   0   0.0 ( 0 )
 نشر من قبل Yixi Su
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron diffraction experiments have been carried out on a Sn-flux grown BaFe2As2 single crystal, the parent compound of the A-122 family of FeAs-based high-Tc superconductors. A tetragonal to orthorhombic structural phase transition and a three dimensional long-range antiferromagnetic ordering of the iron moment, with a unique magnetic propagation wavevector k = (1, 0, 1), have been found to take place at ~90 K. The magnetic moments of iron are aligned along the long a axis in the low temperature orthorhombic phase (Fmmm with b<a<c). Our results thus demonstrate that the magnetic structure of BaFe2As2 single crystal is the same as those in other A-122 iron pnictides compounds. We argue that the tin incorporation in the lattice is responsible for a smaller orthorhombic splitting and lower Neel temperature T_N observed in the experiment.



قيم البحث

اقرأ أيضاً

We present a systematic investigation of the antiferromagnetic ordering and structural distortion for the series of Ba(Fe{1-x}Ru{x})2As2 compounds (0 <= x <= 0.246). Neutron and x-ray diffraction measurements demonstrate that, unlike for the electron -doped compounds, the structural and magnetic transitions remain coincident in temperature. Both the magnetic and structural transitions are gradually suppressed with increased Ru concentration and coexist with superconductivity. For samples that are superconducting, we find strong competition between superconductivity, the antiferromagnetic ordering, and the structural distortion.
We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown single crystal of BaFe2As2. A first-order antiferromagnetic (AF) transition near 135 K was detected by the splitting of NMR lines, which is accompanied by sim ultaneous structural transition as evidenced by a sudden large change of the electric field gradient tensor at the As site. The NMR results lead almost uniquely to the stripe spin structure in the AF phase. The data of spin-lattice relaxation rate indicate development of anisotropic spin fluctuations of the stripe-type with decreasing temperature in the paramagnetic phase.
Single crystal neutron and high-energy x-ray diffraction have identified the phase lines corresponding to transitions between the ambient-pressure tetragonal (T), the antiferromagnetic orthorhombic (O) and the non-magnetic collapsed tetragonal (cT) p hases of CaFe2As2. We find no evidence of additional structures for pressures up to 2.5 GPa (at 300 K). Both the T-cT and O-cT transitions exhibit significant hysteresis effects and we demonstrate that coexistence of the O and cT phases can occur if a non-hydrostatic component of pressure is present. Measurements of the magnetic diffraction peaks show no change in the magnetic structure or ordered moment as a function of pressure in the O phase and we find no evidence of magnetic ordering in the cT phase. Band structure calculations show that the transition results in a strong decrease of the iron 3d density of states at the Fermi energy, consistent with a loss of the magnetic moment.
134 - B.Liu , L.Wang , I.Radelytskyi 2019
Temperature and field-dependent magnetization $M(H,T)$ measurements and neutron scattering study of a single crystal CeSb$_2$ are presented. Several anomalies in the magnetization curves have been confirmed at low magnetic field, i.e., 15.6 K, 12 K, and 9.8 K. These three transitions are all metamagnetic transitions (MMT), which shift to lower temperatures as the magnetic field increases. The anomaly at 15.6 K has been suggested as paramagnetic (PM) to ferromagnetic (FM) phase transition. The anomaly located at around 12 K is antiferromagnetic-like transition, and this turning point will clearly split into two when the magnetic field $Hgeq0.2$ T. Neutron scattering study reveals that the low temperature ground state of CeSb$_2$ orders antiferromagnetically with commensurate propagation wave vectors $textbf{k}=(-1,pm1/6,0)$ and $textbf{k}=(pm1/6,-1,0)$, with Neel temperature $T_Nsim9.8$ K. This transition is of first-order, as shown in the hysteresis loop observed by the field cooled cooling (FCC) and field cooled warming (FCW) processes.
190 - Y. Xiao , Y. Su , M. Meven 2009
Among various parent compounds of iron pnictide superconductors, EuFe2As2 stands out due to the presence of both spin density wave of Fe and antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal neutron diffraction studies hav e been carried out to determine the magnetic structure of this compound and to investigate the coupling of two magnetic sublattices. Long range AFM ordering of Fe and Eu spins was observed below 190 K and 19 K, respectively. The ordering of Fe2+ moments is associated with the wave vector k = (1,0,1) and it takes place at the same temperature as the tetragonal to orthorhombic structural phase transition, which indicates the strong coupling between structural and magnetic components. The ordering of Eu moment is associated with the wave vector k = (0,0,1). While both Fe and Eu spins are aligned along the long a axis as experimentally determined, our studies suggest a weak coupling between the Fe and Eu magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا