ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin reorientation in FeCrAs revealed by single-crystal neutron diffraction

150   0   0.0 ( 0 )
 نشر من قبل Wentao Jin Prof.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic structure of the nonmetallic metal FeCrAs, a compound with the characters of both metals and insulators, was examined as a function of temperature using single-crystal neutron diffraction. The magnetic propagation vector was found to be $mathit{k}$ = (1/3, 1/3, 0), and the magnetic reflections disppeared above $mathit{T_{N}}$ = 116(1) K. In the ground state, the Cr sublattice shows an in-plane spiral antiferromagnetic order. The moment sizes of the Cr ions were found to be small, due to strong magnetic frustration in the distorted Kagome lattice or the itinerant nature of the Cr magnetism, and vary between 0.8 and 1.4 $mu_{B}$ on different sites as expected for a spin-density-wave (SDW) type order. The upper limit of the moment on the Fe sublattice is estimated to be less than 0.1 $mu_{B}$. With increasing temperature up to 95 K, the Cr moments cant out of the $mathit{ab}$ plane gradually, with the in-plane components being suppressed and the out-of-plane components increasing in contrast. This spin-reorientation of Cr moments can explain the dip in the $mathit{c}$-direction magnetic susceptibility and the kink in the magnetic order parameter at $mathit{T_{O}}$ ~ 100 K, a second magnetic transition which was unexplained before. We have also discussed the similarity between FeCrAs and the model itinerant magnet Cr, which exhibits spin-flip transitions and SDW-type antiferromagnetism.



قيم البحث

اقرأ أيضاً

Fe pnictides and related materials have been a topic of intense research for understanding the complex interplay between magnetism and superconductivity. Here we report on the magnetic structure of SrMn$_{2}$As$_{2}$ that crystallizes in a trigonal s tructure ($Pbar{3}m1$) and undergoes an antiferromagnetic (AFM) transition at $T_{textrm c}$ $= 118(2)$ K. The magnetic susceptibility remains nearly constant at temperatures $T le T_{textrm N}$ with $textbf{H}parallel textbf{c}$ whereas it decreases significantly with $textbf{H}parallel textbf{ab}$. This shows that the ordered Mn moments lie in the $textbf{ab}$-plane instead of aligning along the $textbf{c}$-axis as in tetragonal BaMn$_{2}$As$_{2}$. Single-crystal neutron diffraction measurements on SrMn$_{2}$As$_{2}$ demonstrate that the Mn moments are ordered in a collinear N{e}el AFM phase with $180^circ$ AFM alignment between a moment and all nearest neighbor moments in the basal plane and also perpendicular to it. Moreover, quasi-two-dimensional AFM order is manifested in SrMn$_{2}$As$_{2}$ as evident from the temperature dependence of the order parameter.
102 - V. Hutanu , H. Deng , S. Ran 2019
The crystal structure of the new superconductor UTe2 has been investigated for the first time at low temperature (LT) of 2.7 K, just closely above the superconducting transition temperature of about 1.7 K by single crystal neutron diffraction, in ord er to prove, whether the orthorhombic structure of type Immm (Nr. 71 Int. Tabl.) reported for room temperature (RT) persists down to the superconducting phase and can be considered as a parent symmetry for the development of spin triplet superconductivity. Our results show that the RT structure reported previously obtained by single crystal X-Ray diffraction indeed describes also the LT neutron diffraction data with high precision. No structural change from RT down to 2.7 K is observed. Detailed structural parameters for UTe2 at LT are reported.
Field-dependent magnetic structure of a layered Dirac material EuMnBi$_2$ was investigated in detail by the single crystal neutron diffraction and the resonant x-ray magnetic diffraction techniques. On the basis of the reflection conditions in the an tiferromagnetic phase at zero field, the Eu moments were found to be ordered ferromagnetically within the $ab$ plane and stacked antiferromagnetically along the $c$ axis in the sequence of up-up-down-down. Upon the spin-flop transition under the magnetic field parallel to the $c$ axis, the Eu moments are reoriented from the $c$ to the $a$ or $b$ directions forming two kinds of spin-flop domains, whereas the antiferromagnetic structure of the Mn sublattice remains intact as revealed by the quantitative analysis of the change in the neutron diffraction intensities. The present study provides a concrete basis to discuss the dominant role of the Eu sublattice on the enhanced two-dimensionality of the Dirac fermion transport in EuMnBi$_2$.
Through analysis of single crystal neutron diffraction data, we present the magnetic structures of magnetoelectric Co4Nb2O9 under various magnetic fields. In zero-field, neutron diffraction experiments below TN=27 K reveal that the Co2+ moments order primarily along the a* direction without any spin canting along the c axis, manifested by the magnetic symmetry C2/c. The moments of nearest neighbor Co atoms order ferromagnetically with a small cant away from the next nearest neighbor Co moments along the c axis. In the applied magnetic field H//a, three magnetic domains were aligned with their major magnetic moments perpendicular to the magnetic field with no indication of magnetic phase transitions. The influences of magnetic fields on the magnetic structures associated with the observed magnetoelectric coupling are discussed.
108 - W. T. Jin , S. Nandi , Y. Xiao 2013
The magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 is unambiguously determined by single-crystal neutron diffraction. A long-range ferromagnetic order of the Eu2+ moments along the c-direction is revealed below the magnetic phase transiti on temperature Tc = 17 K. In addition, the antiferromagnetism of the Fe2+ moments still survives and the tetragonal-to-orthorhombic structural phase transition is also observed, although the transition temperatures of the Fe-spin density wave (SDW) order and the structural phase transition are significantly suppressed to Tn = 70 K and Ts = 90 K, respectively, compared to the parent compound EuFe2As2.We present the microscopic evidences for the coexistence of the Eu-ferromagnetism (FM) and the Fe-SDW in the superconducting crystal. The superconductivity (SC) competes with the Fe-SDW in Eu(Fe0.82Co0.18)2As2.Moreover, the comparison between Eu(Fe1-xCox)2As2 and Ba(Fe1-xCox)2As2 indicates a considerable influence of the rare-earth element Eu on the magnetism of the Fe sublattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا