ﻻ يوجد ملخص باللغة العربية
We present a Density Functional Theory (DFT) based study of the structural and magnetic properties of the (001) surface of the semiconducting oxide ZnFe2O4 (spinel structure). The calculations were performed using the DFT based ab initio plane wave and pseudopotential method as implemented in the Quantum Espresso code. The all electron Full-potential linearized-augmented-plane-wave method (FP-LAPW) was also employed to check the accuracy of plane wave method. In both calculations the DFT+U methodology was employed and different (001) surface terminations of ZnFe2O4 were studied: We find that the surface terminated in Zn is the stable one. For all the (001) surface terminations our calculations predict that the Zn-Fe cationic inversion (antisites), which are defects in bulk ZnFe2O4, becomes stable and an integral part of the surface. Also, a ferrimagnetic behavior is predicted for the case of antisites in the superficial layer. Our results for different properties of the surface of ZnFe2O4 are compared with those obtained in bulk samples and those reported in the literature.
Despite similar chemical compositions, LiOsO$_3$ and NaOsO$_3$ exhibit remarkably distinct structural, electronic, magnetic, and spectroscopic properties. At low temperature, LiOsO$_3$ is a polar bad metal with a rhombohedral $R3c$ structure without
We present results of a study of small stoichiometric $Cd_{n}Te_{n}$ ($1{leq}n{leq}6$) clusters and few medium sized non-stoichiometric $Cd_{m}Te_{n}$ [($m,n= 13, 16, 19$); ($m{ eq}n$)] clusters using the Density Functional formalism and projector au
Magnetism at the nanoscale has been a very active research area in the past decades, because of its novel fundamental physics and exciting potential applications. We have recently performed an {it ab intio} study of the structural, electronic and mag
Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe a
The presence in the graphyne sheets of a variable amount of sp2/sp1 atoms, which can be transformed into sp3-like atoms by covalent binding with one or two fluorine atoms, respectively, allows one to assume the formation of fulorinated graphynes (flu