ترغب بنشر مسار تعليمي؟ اضغط هنا

Adsorption and STM imaging of tetracyanoethylene on Ag(001): An ab-initio study

105   0   0.0 ( 0 )
 نشر من قبل Thorsten Deilmann
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the adsorption of a single tetracyanoethylene (TCNE) molecule on the silver (001) surface. Adsorption structures, electronic properties, and scanning tunneling microscopy (STM) images are calculated within density-functional theory. Adsorption occurs most favorably in on-top configuration, with the C=C double bond directly above a silver atom and the four N atoms bound to four neighboring Ag atoms. The lowest unoccupied molecular orbital of TCNE becomes occupied due to electron transfer from the substrate. This state dominates the electronic spectrum and the STM image at moderately negative bias. We discuss and employ a spatial extrapolation technique for the calculation of STM and scanning tunneling spectroscopy (STS) images. Our calculated images are in good agreement with experimental data.


قيم البحث

اقرأ أيضاً

First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr esponds to 1 ML adsorption with two Cs atoms occupying the double layer model sites. While the 0.5 ML covered surface is of metallic nature, we found that 1 ML of Cs adsorption corresponds to saturation coverage and leads to a semiconducting surface. The results for the electronic behavior and surface work function suggest that adsorption of Cs takes place via polarized covalent bonding.
We report on a first principles study of anti-ferromagnetic resonance (AFMR) phenomena in metallic systems [MnX (X=Ir,Pt,Pd,Rh) and FeRh] under an external electric field. We demonstrate that the AFMR linewidth can be separated into a relativistic co mponent originating from the angular momentum transfer between the collinear AFM subsystem and the crystal through the spin orbit coupling (SOC), and an exchange component that originates from the spin exchange between the two sublattices. The calculations reveal that the latter component becomes significant in the low temperature regime. Furthermore, we present results for the current-induced intersublattice torque which can be separated into the Field-Like (FL) and Damping-Like (DL) components, affecting the intersublattice exchange coupling and AFMR linewidth, respectively.
We combine ab initio density functional theory with transport calculations to provide a microscopic basis for distinguishing between good and poor metal contacts to nanotubes. Comparing Ti and Pd as examples of different contact metals, we trace back the observed superiority of Pd to the nature of the metal-nanotube hybridization. Based on large scale Landauer transport calculations, we suggest that the `optimum metal-nanotube contact combines a weak hybridization with a large contact length between the metal and the nanotube.
201 - D. Alfe` , M. J. Gillan 2007
We present a general computational scheme based on molecular dynamics (m.d.) simulation for calculating the chemical potential of adsorbed molecules in thermal equilibrium on the surface of a material. The scheme is based on the calculation of the me an force in m.d. simulations in which the height of a chosen molecule above the surface is constrained, and subsequent integration of the mean force to obtain the potential of mean force and hence the chemical potential. The scheme is valid at any coverage and temperature, so that in principle it allows the calculation of the chemical potential as a function of coverage and temperature. It avoids all statistical mechanical approximations, except for the use of classical statistical mechanics for the nuclei, and assumes nothing in advance about the adsorption sites. From the chemical potential, the absolute desorption rate of the molecules can be computed, provided the equilibration rate on the surface is faster than the desorption rate. We apply the theory by {em ab initio} m.d. simulation to the case of H$_2$O on MgO (001) in the low-coverage limit, using the Perdew-Burke-Ernzerhof (PBE) form of exchange-correlation. The calculations yield an {em ab initio} value of the Polanyi-Wigner frequency prefactor, which is more than two orders of magnitude greater than the value of $10^{13}$ s$^{-1}$ often assumed in the past. Provisional comparison with experiment suggests that the PBE adsorption energy may be too low, but the extension of the calculations to higher coverages is needed before firm conclusions can be drawn. The possibility of including quantum nuclear effects by using path-integral simulations is noted.
199 - R. H. Miwa , T. B. Martins , 2007
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {it ab initio} total energy calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا