ﻻ يوجد ملخص باللغة العربية
The spectral gap of the graph Laplacian with Dirichlet boundary conditions is computed for the graphs of several communication networks at the IP-layer, which are subgraphs of the much larger global IP-layer network. We show that the Dirichlet spectral gap of these networks is substantially larger than the standard spectral gap and is likely to remain non-zero in the infinite graph limit. We first prove this result for finite regular trees, and show that the Dirichlet spectral gap in the infinite tree limit converges to the spectral gap of the infinite tree. We also perform Dirichlet spectral clustering on the IP-layer networks and show that it often yields cuts near the network core that create genuine single-component clusters. This is much better than traditional spectral clustering where several disjoint fragments near the periphery are liable to be misleadingly classified as a single cluster. Spectral clustering is often used to identify bottlenecks or congestion; since congestion in these networks is known to peak at the core, our results suggest that Dirichlet spectral clustering may be better at finding bona-fide bottlenecks.
Let $H_{0, D}$ (resp., $H_{0,N}$) be the Schroedinger operator in constant magnetic field on the half-plane with Dirichlet (resp., Neumann) boundary conditions, and let $H_ell : = H_{0, ell} - V$, $ell =D,N$, where the scalar potential $V$ is non neg
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniquen
We consider the problem of how to compute eigenvalues of a self-adjoint operator when a direct application of the Galerkin (finite-section) method is unreliable. The last two decades have seen the development of the so-called quadratic methods for ad
We propose a method to efficiently estimate the Laplacian eigenvalues of an arbitrary, unknown network of interacting dynamical agents. The inputs to our estimation algorithm are measurements about the evolution of a collection of agents (potentially
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional