ﻻ يوجد ملخص باللغة العربية
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional conditions on the twisting velocity (D.Krejcirik, 2015). In the current work we prove a Berezin type upper bound for the eigenvalue moments.
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniquen
We consider the twisted waveguide $Omega_theta$, i.e. the domain obtained by the rotation of the bounded cross section $omega subset {mathbb R}^{2}$ of the straight tube $Omega : = omega times {mathbb R}$ at angle $theta$ which depends on the variabl
We study Riesz means of the eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on bounded domains. We obtain an inequality with a sharp leading term and an additional lower order term, improving the result of Hanson and Laptev.
We consider harmonic Toeplitz operators $T_V = PV:{mathcal H}(Omega) to {mathcal H}(Omega)$ where $P: L^2(Omega) to {mathcal H}(Omega)$ is the orthogonal projection onto ${mathcal H}(Omega) = left{u in L^2(Omega),|,Delta u = 0 ; mbox{in};Omegaright}$
We derive a dispersion estimate for one-dimensional perturbed radial Schrodinger operators where the angular momentum takes the critical value $l=-frac{1}{2}$. We also derive several new estimates for solutions of the underlying differential equation