ﻻ يوجد ملخص باللغة العربية
We consider the problem of how to compute eigenvalues of a self-adjoint operator when a direct application of the Galerkin (finite-section) method is unreliable. The last two decades have seen the development of the so-called quadratic methods for addressing this problem. Recently a new perturbation approach has emerged, the idea being to perturb eigenvalues off the real line and, consequently, away from regions where the Galerkin method fails. We propose a simplified perturbation method which requires no a priori information and for which we provide a rigorous convergence analysis. The latter shows that, in general, our approach will significantly outperform the quadratic methods. We also present a new spectral enclosure for operators of the form $A+iB$ where $A$ is self-adjoint, $B$ is self-adjoint and bounded. This enables us to control, very precisely, how eigenvalues are perturbed from the real line. The main results are demonstrated with examples including magnetohydrodynamics, Schrodinger and Dirac operators.
Let $Gamma$ be an arbitrary $mathbb{Z}^n$-periodic metric graph, which does not coincide with a line. We consider the Hamiltonian $mathcal{H}_varepsilon$ on $Gamma$ with the action $-varepsilon^{-1}{mathrm{d}^2/mathrm{d} x^2}$ on its edges; here $var
The spectral gap of the graph Laplacian with Dirichlet boundary conditions is computed for the graphs of several communication networks at the IP-layer, which are subgraphs of the much larger global IP-layer network. We show that the Dirichlet spectr
We consider the spectrum of the almost Mathieu operator $H_alpha$ with frequency $alpha$ and in the case of the critical coupling. Let an irrational $alpha$ be such that $|alpha-p_n/q_n|<c q_n^{-varkappa}$, where $p_n/q_n$, $n=1,2,dots$ are the conve
This paper reviews many of the known inequalities for the eigenvalues of the Laplacian and bi-Laplacian on bounded domains in Euclidean space. In particular, we focus on isoperimetric inequalities for the low eigenvalues of the Dirichlet and Neumann
We prove sharp lower bounds on the spectral gap of 1-dimensional Schrodinger operators with Robin boundary conditions for each value of the Robin parameter. In particular, our lower bounds apply to single-well potentials with a centered transition po