ﻻ يوجد ملخص باللغة العربية
We propose a method to efficiently estimate the Laplacian eigenvalues of an arbitrary, unknown network of interacting dynamical agents. The inputs to our estimation algorithm are measurements about the evolution of a collection of agents (potentially one) during a finite time horizon; notably, we do not require knowledge of which agents are contributing to our measurements. We propose a scalable algorithm to exactly recover a subset of the Laplacian eigenvalues from these measurements. These eigenvalues correspond directly to those Laplacian modes that are observable from our measurements. We show how our technique can be applied to networks of multiagent systems with arbitrary dynamics in both continuous- and discrete-time. Finally, we illustrate our results with numerical simulations.
Let $G$ be a connected undirected graph with $n$, $nge 3$, vertices and $m$ edges. Denote by $rho_1 ge rho_2 ge cdots > rho_n =0$ the normalized Laplacian eigenvalues of $G$. Upper and lower bounds of $rho_i$, $i=1,2,ldots , n-1$, are determined in terms of $n$ and general Randi c index, $R_{-1}$.
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniquen
In this paper we present a decentralized algorithm to estimate the eigenvalues of the Laplacian matrix that encodes the network topology of a multi-agent system. We consider network topologies modeled by undirected graphs. The basic idea is to provid
The spectral gap of the graph Laplacian with Dirichlet boundary conditions is computed for the graphs of several communication networks at the IP-layer, which are subgraphs of the much larger global IP-layer network. We show that the Dirichlet spectr
For $alphain(0,pi)$, let $U_alpha$ denote the infinite planar sector of opening $2alpha$, [ U_alpha=big{ (x_1,x_2)inmathbb R^2: big|arg(x_1+ix_2) big|<alpha big}, ] and $T^gamma_alpha$ be the Laplacian in $L^2(U_alpha)$, $T^gamma_alpha u= -Delta u$,