ترغب بنشر مسار تعليمي؟ اضغط هنا

Interactions In Space For Archaeological Models

87   0   0.0 ( 0 )
 نشر من قبل Tim Evans
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article we examine a variety of quantitative models for describing archaeological networks, with particular emphasis on the maritime networks of the Aegean Middle Bronze Age. In particular, we discriminate between those gravitational networks that are most likely (maximum entropy) and most efficient (best cost/benefit outcomes).

قيم البحث

اقرأ أيضاً

We develop a minimalist compartmental model to study the impact of mobility restrictions in Italy during the Covid-19 outbreak. We show that an early lockdown shifts the epidemic in time, while that beyond a critical value of the lockdown strength, t he epidemic tend to restart after lifting the restrictions. As a consequence, specific mitigation strategies must be introduced. We characterize the relative importance of different broad strategies by accounting for two fundamental sources of heterogeneity, i.e. geography and demography. First, we consider Italian regions as separate administrative entities, in which social interactions between age classs occur. Due to the sparsity of the inter-regional mobility matrix, once started the epidemics tend to develop independently across areas, justifying the adoption of solutions specific to individual regions or to clusters of regions. Second, we show that social contacts between age classes play a fundamental role and that measures which take into account the age structure of the population can provide a significant contribution to mitigate the rebound effects. Our model is general, and while it does not analyze specific mitigation strategies, it highlights the relevance of some key parameters on non-pharmaceutical mitigation mechanisms for the epidemics.
We address here a few classical lattice--spin models, involving $n-$component unit vectors ($n=2,3$), associated with a $D-$dimensional lattice $mathbb{Z}^D,,D=1,2$, and interacting via a pair potential restricted to nearest neighbours and being isot ropic in spin space, i.e. defined by a function of the scalar product between the interacting spins. When the potential involves a continuous function of the scalar product, the Mermin--Wagner theorem and its generalizations exclude orientational order at all finite temperatures in the thermodynamic limit, and exclude phase transitions at finite temperatures when $D=1$; on the other hand, we have considered here some comparatively simple functions of the scalar product which are bounded from below, diverge to $+infty$ for certain mutual orientations, and are continuous almost everywhere with integrable singularities. Exact solutions are presented for $D=1$, showing absence of phase transitions and absence of orientational order at all finite temperatures in the thermodynamic limit; for $D=2$, and in the absence of more stringent mathematical results, extensive simulations carried out on some of them point to the absence of orientational order at all finite temperatures, and suggest the existence of a Berezinskivi-Kosterlitz-Thouless transition.
We introduce the link-space formalism for analyzing network models with degree-degree correlations. The formalism is based on a statistical description of the fraction of links l_{i,j} connecting nodes of degrees i and j. To demonstrate its use, we a pply the framework to some pedagogical network models, namely, random-attachment, Barabasi-Albert preferential attachment and the classical Erdos and Renyi random graph. For these three models the link-space matrix can be solved analytically. We apply the formalism to a simple one-parameter growing network model whose numerical solution exemplifies the effect of degree-degree correlations for the resulting degree distribution. We also employ the formalism to derive the degree distributions of two very simple network decay models, more specifically, that of random link deletion and random node deletion. The formalism allows detailed analysis of the correlations within networks and we also employ it to derive the form of a perfectly non-assortative network for arbitrary degree distribution.
We present a novel model to simulate real social networks of complex interactions, based in a granular system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to granular systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.
Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someones location from their friends locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a new model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of these networks such as: i) the size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by the model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا