ترغب بنشر مسار تعليمي؟ اضغط هنا

Link-space formalism for network analysis

65   0   0.0 ( 0 )
 نشر من قبل David Smith
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the link-space formalism for analyzing network models with degree-degree correlations. The formalism is based on a statistical description of the fraction of links l_{i,j} connecting nodes of degrees i and j. To demonstrate its use, we apply the framework to some pedagogical network models, namely, random-attachment, Barabasi-Albert preferential attachment and the classical Erdos and Renyi random graph. For these three models the link-space matrix can be solved analytically. We apply the formalism to a simple one-parameter growing network model whose numerical solution exemplifies the effect of degree-degree correlations for the resulting degree distribution. We also employ the formalism to derive the degree distributions of two very simple network decay models, more specifically, that of random link deletion and random node deletion. The formalism allows detailed analysis of the correlations within networks and we also employ it to derive the form of a perfectly non-assortative network for arbitrary degree distribution.



قيم البحث

اقرأ أيضاً

143 - Yukio Hayashi , Yuki Meguro 2011
One of the challenges for future infrastructures is how to design a network with high efficiency and strong connectivity at low cost. We propose self-organized geographical networks beyond the vulnerable scale-free structure found in many real system s. The networks with spatially concentrated nodes emerge through link survival and path reinforcement on routing flows in a wireless environment with a constant transmission range of a node. In particular, we show that adding some shortcuts induces both the small-world effect and a significant improvement of the robustness to the same level as in the optimal bimodal networks. Such a simple universal mechanism will open prospective ways for several applications in wide-area ad hoc networks, smart grids, and urban planning.
This chapter introduces statistical methods used in the analysis of social networks and in the rapidly evolving parallel-field of network science. Although several instances of social network analysis in health services research have appeared recentl y, the majority involve only the most basic methods and thus scratch the surface of what might be accomplished. Cutting-edge methods using relevant examples and illustrations in health services research are provided.
135 - A. Yazdani , P. Jeffrey 2011
This paper explores a variety of strategies for understanding the formation, structure, efficiency and vulnerability of water distribution networks. Water supply systems are studied as spatially organized networks for which the practical applications of abstract evaluation methods are critically evaluated. Empirical data from benchmark networks are used to study the interplay between network structure and operational efficiency, reliability and robustness. Structural measurements are undertaken to quantify properties such as redundancy and optimal-connectivity, herein proposed as constraints in network design optimization problems. The role of the supply-demand structure towards system efficiency is studied and an assessment of the vulnerability to failures based on the disconnection of nodes from the source(s) is undertaken. The absence of conventional degree-based hubs (observed through uncorrelated non-heterogeneous sparse topologies) prompts an alternative approach to studying structural vulnerability based on the identification of network cut-sets and optimal connectivity invariants. A discussion on the scope, limitations and possible future directions of this research is provided.
Power Grids and other delivery networks has been attracted some attention by the network literature last decades. Despite the Power Grids dynamics has been controlled by computer systems and human operators, the static features of this type of networ k can be studied and analyzed. The topology of the Brazilian Power Grid (BPG) was studied in this work. We obtained the spatial structure of the BPG from the ONS (electric systems national operator), consisting of high-voltage transmission lines, generating stations and substations. The local low-voltage substations and local power delivery as well the dynamic features of the network were neglected. We analyze the complex network of the BPG and identify the main topological information, such as the mean degree, the degree distribution, the network size and the clustering coefficient to caracterize the complex network. We also detected the critical locations on the network and, therefore, the more susceptible points to lead to a cascading failure and even to a blackouts. Surprisely, due to the characteristic of the topology and physical structure of the network, we show that the BPG is resilient against random failures, since the random removal of links does not affect significantly the size of the largest cluster. We observe that when a fraction of the links are randomly removed, the network may disintegrates into smaller and disconnected parts, however, the power grid largest component remains connected. We believe that the even a static study of the network topology can help to identify the critical situations and also prevent failures and possible blackouts on the network.
381 - Hua-Wei Shen , Xue-Qi Cheng 2010
Spectral analysis has been successfully applied at the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlat ion matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question through evaluating the effectiveness of these five matrices against the benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain desired benefits from using the configuration model as reference network with the consideration of the node degree heterogeneity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا