ترغب بنشر مسار تعليمي؟ اضغط هنا

Entangling mobility and interactions in social media

156   0   0.0 ( 0 )
 نشر من قبل Przemyslaw Grabowicz Mr
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

Daily interactions naturally define social circles. Individuals tend to be friends with the people they spend time with and they choose to spend time with their friends, inextricably entangling physical location and social relationships. As a result, it is possible to predict not only someones location from their friends locations but also friendship from spatial and temporal co-occurrence. While several models have been developed to separately describe mobility and the evolution of social networks, there is a lack of studies coupling social interactions and mobility. In this work, we introduce a new model that bridges this gap by explicitly considering the feedback of mobility on the formation of social ties. Data coming from three online social networks (Twitter, Gowalla and Brightkite) is used for validation. Our model reproduces various topological and physical properties of these networks such as: i) the size of the connected components, ii) the distance distribution between connected users, iii) the dependence of the reciprocity on the distance, iv) the variation of the social overlap and the clustering with the distance. Besides numerical simulations, a mean-field approach is also used to study analytically the main statistical features of the networks generated by the model. The robustness of the results to changes in the model parameters is explored, finding that a balance between friend visits and long-range random connections is essential to reproduce the geographical features of the empirical networks.



قيم البحث

اقرأ أيضاً

Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be pr esent in the mobility patterns of both social and non-social ties, a distinction that has not yet been addressed. Here we develop a colocation network to distinguish the mobility patterns of an egos social ties from those of non-social colocators, individuals not socially connected to the ego but who nevertheless arrive at a location at the same time as the ego. We apply entropy and predictability measures to analyse and bound the predictive information of an individuals mobility pattern and the flow of that information from their top social ties and from their non-social colocators. While social ties generically provide more information than non-social colocators, we find that significant information is present in the aggregation of non-social colocators: 3-7 colocators can provide as much predictive information as the top social tie, and colocators can replace up to 85% of the predictive information about an ego, compared with social ties that can replace up to 94% of the egos predictability. The presence of predictive information among non-social colocators raises privacy concerns: given the increasing availability of real-time mobility traces from smartphones, individuals sharing data may be providing actionable information not just about their own movements but the movements of others whose data are absent, both known and unknown individuals.
The occurrence of new events in a system is typically driven by external causes and by previous events taking place inside the system. This is a general statement, applying to a range of situations including, more recently, to the activity of users i n Online social networks (OSNs). Here we develop a method for extracting from a series of posting times the relative contributions of exogenous, e.g. news media, and endogenous, e.g. information cascade. The method is based on the fitting of a generalized linear model (GLM) equipped with a self-excitation mechanism. We test the method with synthetic data generated by a nonlinear Hawkes process, and apply it to a real time series of tweets with a given hashtag. In the empirical dataset, the estimated contributions of exogenous and endogenous volumes are close to the amounts of original tweets and retweets respectively. We conclude by discussing the possible applications of the method, for instance in online marketing.
Human behaviors exhibit ubiquitous correlations in many aspects, such as individual and collective levels, temporal and spatial dimensions, content, social and geographical layers. With rich Internet data of online behaviors becoming available, it at tracts academic interests to explore human mobility similarity from the perspective of social network proximity. Existent analysis shows a strong correlation between online social proximity and offline mobility similari- ty, namely, mobile records between friends are significantly more similar than between strangers, and those between friends with common neighbors are even more similar. We argue the importance of the number and diversity of com- mon friends, with a counter intuitive finding that the number of common friends has no positive impact on mobility similarity while the diversity plays a key role, disagreeing with previous studies. Our analysis provides a novel view for better understanding the coupling between human online and offline behaviors, and will help model and predict human behaviors based on social proximity.
Recent wide-spread adoption of electronic and pervasive technologies has enabled the study of human behavior at an unprecedented level, uncovering universal patterns underlying human activity, mobility, and inter-personal communication. In the presen t work, we investigate whether deviations from these universal patterns may reveal information about the socio-economical status of geographical regions. We quantify the extent to which deviations in diurnal rhythm, mobility patterns, and communication styles across regions relate to their unemployment incidence. For this we examine a country-scale publicly articulated social media dataset, where we quantify individual behavioral features from over 145 million geo-located messages distributed among more than 340 different Spanish economic regions, inferred by computing communities of cohesive mobility fluxes. We find that regions exhibiting more diverse mobility fluxes, earlier diurnal rhythms, and more correct grammatical styles display lower unemployment rates. As a result, we provide a simple model able to produce accurate, easily interpretable reconstruction of regional unemployment incidence from their social-media digital fingerprints alone. Our results show that cost-effective economical indicators can be built based on publicly-available social media datasets.
In this paper, we discuss the possible generalizations of the Social Influence with Recurrent Mobility (SIRM) model developed in Phys. Rev. Lett. 112, 158701 (2014). Although the SIRM model worked approximately satisfying when US election was modelle d, it has its limits: it has been developed only for two-party systems and can lead to unphysical behaviour when one of the parties has extreme vote share close to 0 or 1. We propose here generalizations to the SIRM model by its extension for multi-party systems that are mathematically well-posed in case of extreme vote shares, too, by handling the noise term in a different way. In addition, we show that our method opens new applications for the study of elections by using a new calibration procedure, and makes possible to analyse the influence of the free will (creating a new party) and other local effects for different commuting network topologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا