ﻻ يوجد ملخص باللغة العربية
The presence of interface states at the MOS interface is a well-known cause of device degradation. This is particularly true for ultra-scaled FinFET geometries where the presence of a few traps can strongly influence device behavior. Typical methods for interface trap density (Dit) measurements are not performed on ultimate devices, but on custom designed structures. We present the first set of methods that allow direct estimation of Dit in state-of-the-art FinFETs, addressing a critical industry need.
Ultra-scaled FinFET transistors bear unique fingerprint-like device-to-device differences attributed to random single impurities. This paper describes how, through correlation of experimental data with multimillion atom tight-binding simulations usin
We perform detailed magnetotransport studies on two-dimensional electron gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify the electron mobility limiting mechanisms in this increasingly important materials system. By analy
This paper discusses how classical transport theories such as the thermionic emission, can be used as a powerful tool for the study and the understanding of the most complex mechanisms of transport in Fin Field Effect Transistors (FinFETs). By means
Si-SiO2 multilayer nanocomposite (NCp) films, grown using pulsed laser deposition with varying Si deposition time are investigated using Raman spectroscopy/mapping for studying the variation of Si phonon frequency observed in these NCps. The lower fr
Intermediate frequency range (511 - 514 cm-1) Si phonons in Si-SiO2 nanocomposites are shown to have contribution from both core1 and surface/interface1 Si phonons, where, ratio of contribution of the two depends on the size of a Si nanocrystal. Furt